Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(4): 2386-2395, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36728508

RESUMO

The treatment of gastrointestinal stromal tumors (GISTs) driven by activating mutations in the KIT gene is a prime example of targeted therapy for treatment of cancer. The approval of the tyrosine kinase inhibitor imatinib has significantly improved patient survival, but emerging resistance under treatment and relapse is observed. Several additional KIT inhibitors have been approved; still, there is a high unmet need for KIT inhibitors with high selectivity and broad coverage of all clinically relevant KIT mutants. An imidazopyridine hit featuring excellent kinase selectivity was identified in a high-throughput screen (HTS) and optimized to the clinical candidate M4205 (IDRX-42). This molecule has a superior profile compared to approved drugs, suggesting a best-in-class potential for recurrent and metastatic GISTs driven by KIT mutations.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Proteínas Proto-Oncogênicas c-kit/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Mesilato de Imatinib , Mutação , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/tratamento farmacológico
2.
ChemMedChem ; 16(24): 3653-3662, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582626

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors. The top molecule 1 of that series strongly inhibited CYP2C8 (IC50 =100 nM), which was attributed to the bridged linker group. However, our effort on the linker replacement turned out to be fruitless. With the study of the X-ray crystal structure of compound 1, we envisioned the opportunity of removal of this liability via transposition of the linker moiety in 1 from C6 to C5 position of the pyridine core. With this strategy, our optimization led to the discovery of a novel series, in which the top molecule 18 A displayed reduced CYP inhibitory activity and good potency. To further explore this new series, different warheads besides acrylamide, for example cyanamide, were also tested. However, this effort didn't lead to the discovery of molecules with better potency than 18 A. The loss of potency in those molecules could be related to the reduced reactivity of the warhead or reversible binding mode. Further profiling of 18 A disclosed that it had a strong hERG (human Ether-a-go-go Related Gene) inhibition, which could be related to the phenoxyphenyl group.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores do Citocromo P-450 CYP2C8/síntese química , Inibidores do Citocromo P-450 CYP2C8/química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Toxicol Appl Pharmacol ; 429: 115695, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419493

RESUMO

M3258 is the first selective inhibitor of the immunoproteasome subunit LMP7 (Large multifunctional protease 7) in early clinical development with the potential to improve therapeutic utility in patients of multiple myeloma (MM) or other hematological malignancies. Safety pharmacology studies with M3258 did not reveal any functional impairments of the cardiovascular system in several in vitro tests employing human cardiomyocytes and cardiac ion channels (including hERG), guinea pig heart refractory period and force contraction, and rat aortic contraction as well as in cardiovascular function tests in dogs. Following single dose M3258 administration to rats, no changes were observed on respiratory function by using whole body plethysmography, nor did it change (neuro)behavioral parameters in a battery of tests. Based on pivotal 4-week toxicity studies with daily oral dosing of M3258, the identified key target organs of toxicity were limited to the lympho-hematopoietic system in rats and dogs, and to the intestine with its local lymphoid tissues in dogs only. Importantly, the stomach, nervous system, heart, lungs, and kidneys, that may be part of clinically relevant toxicities as reported for pan-proteasome inhibitors, were spared with M3258. Therefore, it is anticipated that by targeting highly selective and potent inhibition of LMP7, the resulting favorable safety profile of M3258 together with the maintained potent anti-tumor activity as previously reported in mouse MM xenograft models, may translate into an improved benefit-risk profile in MM patients.


Assuntos
Ácidos Borônicos/toxicidade , Furanos/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/toxicidade , Administração Oral , Animais , Ácidos Borônicos/administração & dosagem , Células Cultivadas , Cães , Feminino , Furanos/administração & dosagem , Cobaias , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/patologia , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Sistema Linfático/efeitos dos fármacos , Sistema Linfático/patologia , Masculino , Inibidores de Proteassoma/administração & dosagem , Ratos Wistar , Medição de Risco , Especificidade da Espécie , Testes de Toxicidade
4.
Food Chem Toxicol ; 50(5): 1796-801, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425938

RESUMO

Patulin is a frequently found food contaminant mainly produced by the fungi Aspergillus and Penicillium. Patulin is suspected to be clastogenic, mutagenic, teratogenic and in higher concentrations cytotoxic. Here, we investigate the mechanism of the patulin-induced genotoxicity. Chromosomal damage was detected as micronucleus and nucleoplasmic bridge formation. Due to the activity of patulin on SH-groups, glutathione is a major compound in the cellular defense against patulin and the depletion of glutathione level with buthionine sulfoximine led to a strong increase in the genoxicity of patulin. A modified version of the alkaline comet assay was carried out to show the cross-linking properties of patulin. As a mechanistic hypothesis, we suspect patulin to cause structural DNA damage by cross-linking, yielding nucleoplasmic bridges and as a later consequence, micronucleus formation. The structural DNA damage may also lead to cell cycle delays, the consequence of which may be the observed centrosome amplification and formation of multipolar mitotic spindles.


Assuntos
Mutagênicos/toxicidade , Patulina/toxicidade , Aberrações Cromossômicas , Ensaio Cometa , Dano ao DNA , Glutationa/metabolismo , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA