Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 8(17): 4765-4780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279736

RESUMO

Modern oncology aims at patient-specific therapy approaches, which triggered the development of biomedical imaging techniques to synergistically address tumor biology at the cellular and molecular level. PET/MR is a new hybrid modality that allows acquisition of high-resolution anatomic images and quantification of functional and metabolic information at the same time. Key steps of the Warburg effect-one of the hallmarks of tumors-can be measured non-invasively with this emerging technique. The aim of this study was to quantify and compare simultaneously imaged augmented glucose uptake and LDH activity in a subcutaneous breast cancer model in rats (MAT-B-III) and to study the effect of varying tumor cellularity on image-derived metabolic information. Methods: For this purpose, we established and validated a multimodal imaging workflow for a clinical PET/MR system including proton magnetic resonance (MR) imaging to acquire accurate morphologic information and diffusion-weighted imaging (DWI) to address tumor cellularity. Metabolic data were measured with dynamic [18F]FDG-PET and hyperpolarized (HP) 13C-pyruvate MR spectroscopic imaging (MRSI). We applied our workflow in a longitudinal study and analyzed the effect of growth dependent variations of cellular density on glycolytic parameters. Results: Tumors of similar cellularity with similar apparent diffusion coefficients (ADC) showed a significant positive correlation of FDG uptake and pyruvate-to-lactate exchange. Longitudinal DWI data indicated a decreasing tumor cellularity with tumor growth, while ADCs exhibited a significant inverse correlation with PET standard uptake values (SUV). Similar but not significant trends were observed with HP-13C-MRSI, but we found that partial volume effects and point spread function artifacts are major confounders for the quantification of 13C-data when the spatial resolution is limited and major blood vessels are close to the tumor. Nevertheless, analysis of longitudinal data with varying tumor cellularity further detected a positive correlation between quantitative PET and 13C-data. Conclusions: Our workflow allows the quantification of simultaneously acquired PET, MRSI and DWI data in rodents on a clinical PET/MR scanner. The correlations and findings suggest that a major portion of consumed glucose is metabolized by aerobic glycolysis in the investigated tumor model. Furthermore, we conclude that variations in cell density affect PET and 13C-data in a similar manner and correlations of longitudinal metabolic data appear to reflect both biochemical processes and tumor cellularity.


Assuntos
Anaerobiose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes e Vias Metabólicas , Tomografia por Emissão de Pósitrons/métodos , Aerobiose , Animais , Isótopos de Carbono/administração & dosagem , Modelos Animais de Doenças , Fluordesoxiglucose F18/administração & dosagem , Glucose/metabolismo , Xenoenxertos , L-Lactato Desidrogenase/análise , Transplante de Neoplasias , Ratos
2.
Sensors (Basel) ; 18(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462891

RESUMO

pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P) with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

3.
Chemphyschem ; 18(18): 2422-2425, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28719100

RESUMO

Aberrant pH is characteristic of many pathologies such as ischemia, inflammation or cancer. Therefore, a non-invasive and spatially resolved pH determination is valuable for disease diagnosis, characterization of response to treatment and the design of pH-sensitive drug-delivery systems. We recently introduced hyperpolarized [1,5-13 C2 ]zymonic acid (ZA) as a novel MRI probe of extracellular pH utilizing dissolution dynamic polarization (DNP) for a more than 10000-fold signal enhancement of the MRI signal. Here we present a strategy to enhance the sensitivity of this approach by deuteration of ZA yielding [1,5-13 C2 , 3,6,6,6-D4 ]zymonic acid (ZAd ), which prolongs the liquid state spin lattice relaxation time (T1 ) by up to 39 % in vitro. Measurements with ZA and ZAd on subcutaneous MAT B III adenocarcinoma in rats show that deuteration increases the signal-to-noise ratio (SNR) by up to 46 % in vivo. Furthermore, we demonstrate a proof of concept for real-time imaging of dynamic pH changes in vitro using ZAd , potentially allowing for the characterization of rapid acidification/basification processes in vivo.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sondas Moleculares/química , Animais , Isótopos de Carbono , Concentração de Íons de Hidrogênio , Teoria Quântica , Ratos
4.
Nat Commun ; 8: 15126, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492229

RESUMO

Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance.


Assuntos
Meios de Contraste/química , Furanos/química , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Animais/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Animais , Isótopos de Carbono/química , Meios de Contraste/metabolismo , Feminino , Furanos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Injeções Subcutâneas , Rim/metabolismo , Rim/patologia , Células MCF-7 , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Ratos , Coloração e Rotulagem/métodos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
5.
NMR Biomed ; 29(7): 952-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27195474

RESUMO

Individual tumor characterization and treatment response monitoring based on current medical imaging methods remain challenging. This work investigates hyperpolarized (13) C compounds in an orthotopic rat hepatocellular carcinoma (HCC) model system before and after transcatheter arterial embolization (TAE). HCC ranks amongst the top six most common cancer types in humans and accounts for one-third of cancer-related deaths worldwide. Early therapy response monitoring could aid in the development of personalized therapy approaches and novel therapeutic concepts. Measurements with selectively (13) C-labeled and hyperpolarized urea, pyruvate and fumarate were performed in tumor-bearing rats before and after TAE. Two-dimensional, slice-selective MRSI was used to obtain spatially resolved maps of tumor perfusion, cell energy metabolic conversion rates and necrosis, which were additionally correlated with immunohistochemistry. All three injected compounds, taken together with their respective metabolites, exhibited similar signal distributions. TAE induced a decrease in blood flow into the tumor and thus a decrease in tumor to muscle and tumor to liver ratios of urea, pyruvate and its metabolites, alanine and lactate, whereas conversion rates remained stable or increased on TAE in tumor, muscle and liver tissue. Conversion from fumarate to malate successfully indicated individual levels of necrosis, and global malate signals after TAE suggested the washout of fumarase or malate itself on necrosis. This study presents a combination of three (13) C compounds as novel candidate biomarkers for a comprehensive characterization of genetically and molecularly diverse HCC using hyperpolarized MRSI, enabling the simultaneous detection of differences in tumor perfusion, metabolism and necrosis. If, as in this study, bolus dynamics are not required and qualitative perfusion information is sufficient, the desired information could be extracted from hyperpolarized fumarate and pyruvate alone, acquired at higher fields with better spectral separation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Embolização Terapêutica/métodos , Imagem Molecular/métodos , Compostos Orgânicos/metabolismo , Animais , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular Tumoral , Feminino , Imageamento por Ressonância Magnética/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
6.
J Vis Exp ; (118)2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-28060330

RESUMO

In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers have emerged in conjunction with the state-of-the-art positron emission tomography with 18F-fluorodeoxyglucose ([18F]-FDG PET). 13C magnetic resonance spectroscopic imaging (13CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in real time. As with any other method based on 13C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of 13C and its low natural abundance in biological samples. By overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems. A particularly interesting and promising molecule used in 13CMRSI is [1-13C]pyruvate, which, in the last ten years, has been widely used for in vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and catalyzed the metabolic reaction of [1-13C]pyruvate to [1-13C]lactate in a prostate carcinoma cell line, PC3, in vitro using 13CMRSI.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Fluordesoxiglucose F18 , Humanos , Ácido Láctico/metabolismo , Masculino , Ácido Pirúvico/metabolismo
7.
Magn Reson Med ; 69(5): 1209-16, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648928

RESUMO

Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using spectral-spatial excitation in combination with single-shot spiral data acquisition, the overall encoding is evenly distributed between excitation and signal reception, allowing the encoding of one full two-dimensional metabolite image per excitation. The signal-to-noise ratio can be flexibly adjusted and optimized using lower flip angles for the pyruvate substrate and larger ones for the downstream metabolites. Selectively adjusting the excitation of the down-stream metabolites to 90° leads to a so-called "saturation-recovery" scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using a simplified two-site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this "saturation-recovery metabolic exchange rate imaging" and demonstrate its capabilities in four rats bearing subcutaneous tumors.


Assuntos
Alanina/metabolismo , Bicarbonatos/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Experimentais/metabolismo , Ácido Pirúvico/farmacocinética , Animais , Isótopos de Carbono/farmacocinética , Linhagem Celular Tumoral , Feminino , Taxa de Depuração Metabólica , Neoplasias Experimentais/diagnóstico , Prótons , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Endogâmicos F344
8.
NMR Biomed ; 26(5): 557-68, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23233311

RESUMO

The detection of tumors noninvasively, the characterization of their progression by defined markers and the monitoring of response to treatment are goals of medical imaging techniques. In this article, a method which measures the apparent diffusion coefficients (ADCs) of metabolites using hyperpolarized (13) C diffusion-weighted spectroscopy is presented. A pulse sequence based on the pulsed gradient spin echo (PGSE) was developed that encodes both kinetics and diffusion information. In experiments with MCF-7 human breast cancer cells, we detected an ADC of intracellularly produced lactate of 1.06 ± 0.15 µm(2) /ms, which is about one-half of the value measured with pyruvate in extracellular culture medium. When monitoring tumor cell spheroids during progressive membrane permeabilization with Triton X-100, the ratio of lactate ADC to pyruvate ADC increases as the fraction of dead cells increases. Therefore, (13) C ADC detection can yield sensitive information on changes in membrane permeability and subsequent cell death. Our results suggest that both metabolic label exchange and (13) C ADCs can be acquired simultaneously, and may potentially serve as noninvasive biomarkers for pathological changes in tumor cells.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Neoplasias/metabolismo , Isótopos de Carbono , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Difusão , Feminino , Humanos , Neoplasias/patologia , Ácido Pirúvico/metabolismo , Esferoides Celulares
9.
J Magn Reson ; 223: 129-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22975241

RESUMO

A major challenge for in vivo magnetic resonance spectroscopy with point-resolved spectroscopy (PRESS) is the low signal intensity for the measurement of weakly scalar coupled spins, for example lactate. The chemical-shift displacement error between the two coupling partners of the lactate molecule leads to a signal decrease. The chemical-shift displacement error is decreased and therefore the lactate signal is increased by using refocusing pulses with a broad bandwidth. Previously, slice-selective broadband universal rotation pulses (S-BURBOP) were designed and applied as refocusing pulses in the PRESS pulse sequence (Janich MA, et al., Journal of Magnetic Resonance, 2011, 213, 126-135). However, S-BURBOP pulses leave a phase error across the slice which is superimposed on the spectra when spatially resolving the PRESS voxel. In the present novel design of slice-selective broadband refocusing pulses (S-BREBOP) this phase error is avoided. S-BREBOP pulses obtain 2.5 times the bandwidth of conventional Shinnar-Le Roux pulses and are robust against ±20% miscalibration of the B(1) amplitude. S-BREBOP pulses were validated in phantoms and in a low-grade brain tumor of a patient. Compared to conventional Shinnar-Le Roux pulses they lead to a decrease of the chemical-shift displacement error and consequently a lactate signal increase.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Calibragem , Humanos , Lactatos/química , Imageamento por Ressonância Magnética , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA