Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 5910, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003273

RESUMO

Lymphoid specification in human hematopoietic progenitors is not fully understood. To better associate lymphoid identity with protein-level cell features, we conduct a highly multiplexed single-cell proteomic screen on human bone marrow progenitors. This screen identifies terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase intrinsic to VDJ recombination, broadly expressed within CD34+ progenitors prior to B/T cell emergence. While these TdT+ cells coincide with granulocyte-monocyte progenitor (GMP) immunophenotype, their accessible chromatin regions show enrichment for lymphoid-associated transcription factor (TF) motifs. TdT expression on GMPs is inversely related to the SLAM family member CD84. Prospective isolation of CD84lo GMPs demonstrates robust lymphoid potentials ex vivo, while still retaining significant myeloid differentiation capacity, akin to LMPPs. This multi-omic study identifies human bone marrow lymphoid-primed progenitors, further defining the lympho-myeloid axis in human hematopoiesis.


Assuntos
DNA Nucleotidilexotransferase , Células Progenitoras Linfoides , Humanos , DNA Nucleotidilexotransferase/metabolismo , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/citologia , Diferenciação Celular , Análise de Célula Única , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Hematopoese , Proteômica/métodos , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos CD34/metabolismo
2.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895348

RESUMO

Dysregulation of the bone marrow (BM) niche in multiple myeloma (MM) alters the composition and state of resident immune cells, potentially impeding anti-tumor immunity. One common mechanism of immune inhibition in solid tumors is the induction of exhaustion in tumor-specific T cells. However, the extent of T cell tumor recognition and exhaustion is not well-characterized in MM. As the specific mechanisms of immune evasion are critical for devising effective therapeutic strategies, we deeply profiled the CD8+ T cell compartment of newly-diagnosed MM (NDMM) patients for evidence of tumor reactivity and T cell exhaustion. We applied single-cell multi-omic sequencing and antigen-specific mass cytometry to longitudinal BM and peripheral blood (PB) samples taken from timepoints spanning from diagnosis through induction therapy, autologous stem cell transplant (ASCT), and maintenance therapy. We identified an exhausted-like population that lacked several canonical exhaustion markers, was not significantly enriched in NDMM patients, and consisted of small, nonpersistent clones. We also observed an activated population with increased frequency in the PB of NDMM patients exhibiting phenotypic and clonal features consistent with homeostatic, antigen-nonspecific activation. However, there was no evidence of "tumor-experienced" T cells displaying hallmarks of terminal exhaustion and/or tumor-specific activation/expansion in NDMM patients at any timepoint.

3.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38712065

RESUMO

Single-cell spatial transcriptomics promises a highly detailed view of a cell's transcriptional state and microenvironment, yet inaccurate cell segmentation can render this data murky by misattributing large numbers of transcripts to nearby cells or conjuring nonexistent cells. We adopt methods from ab initio cell simulation to rapidly infer morphologically plausible cell boundaries that preserve cell type heterogeneity. Benchmarking applied to datasets generated by three commercial platforms show superior performance and computational efficiency of this approach compared with existing methods. We show that improved accuracy in cell segmentation aids greatly in detection of difficult to accurately segment tumor infiltrating immune cells such as neutrophils and T cells. Lastly, through improvements in our ability to delineate subsets of tumor infiltrating T cells, we show that CXCL13-expressing CD8+ T cells tend to be more closely associated with tumor cells than their CXCL13-negative counterparts in data generated from renal cell carcinoma patient samples.

4.
Cell Rep Med ; 5(5): 101527, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670099

RESUMO

Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.


Assuntos
Imunoterapia , Linfoma Cutâneo de Células T , Humanos , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/terapia , Linfoma Cutâneo de Células T/patologia , Imunoterapia/métodos , Interferon gama/metabolismo , Interferon gama/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Masculino , Feminino , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Multiômica
5.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693547

RESUMO

Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.

6.
Cell Rep ; 39(3): 110728, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443184

RESUMO

Regulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry. Our analysis shows that multiple functional B cell subsets produce IL-10 and that no phenotype uniquely identifies IL-10+ B cells. Further, a significant portion of IL-10+ B cells co-express the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNFα). Despite this heterogeneity, operationally tolerant liver transplant recipients have a unique enrichment of IL-10+, but not TNFα+ or IL-6+, B cells compared with transplant recipients receiving immunosuppression. Thus, human IL-10-producing B cells constitute an induced, transient state arising from a diversity of B cell subsets that may contribute to maintenance of immune homeostasis.


Assuntos
Linfócitos B Reguladores , Interleucina-10/biossíntese , Citocinas , Humanos , Tolerância Imunológica , Interleucina-10/genética , Interleucina-6 , Fator de Necrose Tumoral alfa
7.
Cell ; 185(2): 299-310.e18, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063072

RESUMO

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Diferenciação Celular , Estudos de Coortes , Progressão da Doença , Células Epiteliais/patologia , Epitélio/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Fenótipo , Análise de Célula Única , Células Estromais/patologia , Microambiente Tumoral
8.
Nat Biotechnol ; 39(2): 186-197, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32868913

RESUMO

Cellular metabolism regulates immune cell activation, differentiation and effector functions, but current metabolic approaches lack single-cell resolution and simultaneous characterization of cellular phenotype. In this study, we developed an approach to characterize the metabolic regulome of single cells together with their phenotypic identity. The method, termed single-cell metabolic regulome profiling (scMEP), quantifies proteins that regulate metabolic pathway activity using high-dimensional antibody-based technologies. We employed mass cytometry (cytometry by time of flight, CyTOF) to benchmark scMEP against bulk metabolic assays by reconstructing the metabolic remodeling of in vitro-activated naive and memory CD8+ T cells. We applied the approach to clinical samples and identified tissue-restricted, metabolically repressed cytotoxic T cells in human colorectal carcinoma. Combining our method with multiplexed ion beam imaging by time of flight (MIBI-TOF), we uncovered the spatial organization of metabolic programs in human tissues, which indicated exclusion of metabolically repressed immune cells from the tumor-immune boundary. Overall, our approach enables robust approximation of metabolic and functional states in individual cells.


Assuntos
Metaboloma , Análise de Célula Única , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Análise do Fluxo Metabólico
9.
Immunity ; 53(1): 217-232.e5, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668225

RESUMO

B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation, cytokine production, and generation of immunological memory. A consistent strategy for classifying human B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of human B cells. We identified differentially expressed molecules and aligned their variance with isotype usage, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these analyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique subsets, including a CD45RB+CD27- early memory population, a class-switched CD39+ tonsil-resident population, and a CD19hiCD11c+ memory population that potently responds to immune activation. This classification framework and underlying datasets provide a resource for further investigations of human B cell identity and function.


Assuntos
Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/imunologia , Isotipos de Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Antígeno CD11c/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Memória Imunológica/imunologia , Antígenos Comuns de Leucócito/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Receptor fas/metabolismo
10.
Nat Med ; 26(3): 408-417, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161403

RESUMO

The diagnosis of lymphomas and leukemias requires hematopathologists to integrate microscopically visible cellular morphology with antibody-identified cell surface molecule expression. To merge these into one high-throughput, highly multiplexed, single-cell assay, we quantify cell morphological features by their underlying, antibody-measurable molecular components, which empowers mass cytometers to 'see' like pathologists. When applied to 71 diverse clinical samples, single-cell morphometric profiling reveals robust and distinct patterns of 'morphometric' markers for each major cell type. Individually, lamin B1 highlights acute leukemias, lamin A/C helps distinguish normal from neoplastic mature T cells, and VAMP-7 recapitulates light-cytometric side scatter. Combined with machine learning, morphometric markers form intuitive visualizations of normal and neoplastic cellular distribution and differentiation. When recalibrated for myelomonocytic blast enumeration, this approach is superior to flow cytometry and comparable to expert microscopy, bypassing years of specialized training. The contextualization of traditional surface markers on independent morphometric frameworks permits more sensitive and automated diagnosis of complex hematopoietic diseases.


Assuntos
Leucemia/diagnóstico , Leucemia/patologia , Linfoma/diagnóstico , Linfoma/patologia , Análise de Célula Única/métodos , Células-Tronco Hematopoéticas/patologia , Humanos , Laminas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Células Mieloides/patologia , Proteínas R-SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA