Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849826

RESUMO

Aspergillus flavus is an opportunistic pathogen of crops, including peanuts and maize, and is the second leading cause of aspergillosis in immunocompromised patients. A. flavus is also a major producer of the mycotoxin, aflatoxin, a potent carcinogen, which results in significant crop losses annually. The A. flavus isolate NRRL 3357 was originally isolated from peanut and has been used as a model organism for understanding the regulation and production of secondary metabolites, such as aflatoxin. A draft genome of NRRL 3357 was previously constructed, enabling the development of molecular tools and for understanding population biology of this particular species. Here, we describe an updated, near complete, telomere-to-telomere assembly and re-annotation of the eight chromosomes of A. flavus NRRL 3357 genome, accomplished via long-read PacBio and Oxford Nanopore technologies combined with Illumina short-read sequencing. A total of 13,715 protein-coding genes were predicted. Using RNA-seq data, a significant improvement was achieved in predicted 5' and 3' untranslated regions, which were incorporated into the new gene models.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Cromossomos , Genoma Fúngico , Humanos , Análise de Sequência de DNA
2.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665272

RESUMO

The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations.IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller's ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Metagenômica , Recombinação Genética , Aspergillus flavus/classificação , DNA Fúngico/genética , Variação Genética , Desequilíbrio de Ligação , Família Multigênica , Mutação , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 117(31): 18600-18607, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32703806

RESUMO

Programmed cell death (PCD) in filamentous fungi prevents cytoplasmic mixing following fusion between conspecific genetically distinct individuals (allorecognition) and serves as a defense mechanism against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (i.e., senescence plasmids). Recently, we identified regulatorof cell death-1 (rcd-1), a gene controlling PCD in germinated asexual spores in the filamentous fungus Neurospora crassarcd-1 alleles are highly polymorphic and fall into two haplogroups in N. crassa populations. Coexpression of alleles from the two haplogroups, rcd-1-1 and rcd-1-2, is necessary and sufficient to trigger a cell death reaction. Here, we investigated the molecular bases of rcd-1-dependent cell death. Based on in silico analyses, we found that RCD-1 is a remote homolog of the N-terminal pore-forming domain of gasdermin, the executioner protein of a highly inflammatory cell death reaction termed pyroptosis, which plays a key role in mammalian innate immunity. We show that RCD-1 localizes to the cell periphery and that cellular localization of RCD-1 was correlated with conserved positively charged residues on predicted amphipathic α-helices, as shown for murine gasdermin-D. Similar to gasdermin, RCD-1 binds acidic phospholipids in vitro, notably, cardiolipin and phosphatidylserine, and interacts with liposomes containing such lipids. The RCD-1 incompatibility system was reconstituted in human 293T cells, where coexpression of incompatible rcd-1-1/rcd-1-2 alleles triggered pyroptotic-like cell death. Oligomers of RCD-1 were associated with the cell death reaction, further supporting the evolutionary relationship between gasdermin and rcd-1 This report documents an ancient transkingdom relationship of cell death execution modules involved in organismal defense.


Assuntos
Proteínas Fúngicas , Proteínas de Neoplasias , Piroptose/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Neurospora crassa/metabolismo
4.
Genom Data ; 4: 26-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26484172

RESUMO

Xanthones are a class of heterocyclic compounds characterized by a dibenzo-γ-pyrone nucleus. Analysis of their mode of action in cells, namely uncovering alterations in gene expression, is important because these compounds have potential therapeutic applications. Thus, we studied the transcriptional response of the filamentous fungus Neurospora crassa to a group of synthetic (thio)xanthone derivatives with antitumor activity using high throughput RNA sequencing. The induction of ABC transporters in N. crassa, particularly atrb and cdr4, is a common consequence of the treatment with xanthones. In addition, we found a group of genes repressed by all of the tested (thio)xanthone derivatives, that are evocative of genes downregulated during oxidative stress. The transcriptional response of N. crassa treated with an acetophenone isolated from the soil fungus Neosartorya siamensis shares some features with the (thio)xanthone-elicited gene expression profiles. Two of the (thio)xanthone derivatives and the N. siamensis-derived acetophenone inhibited the growth of N. crassa. Our work also provides framework datasets that may orientate future studies on the mechanisms of action of some groups of xanthones.

5.
J Biol Chem ; 283(28): 19314-21, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18474589

RESUMO

We have studied the effects of phytosphingosine (PHS) on cells of the filamentous fungus Neurospora crassa. Highly reduced viability, impairment of asexual spore germination, DNA condensation and fragmentation, and production of reactive oxygen species were observed in conidia treated with the drug, suggesting that PHS induces an apoptosis-like death in this fungus. Interestingly, we found that complex I mutants are more resistant to PHS treatment than the wild type strain. This effect appears to be specific because it was not observed in mutants defective in other components of the mitochondrial respiratory chain, pointing to a particular involvement of complex I in cell death. The response of the mutant strains to PHS correlated with their response to hydrogen peroxide. The fact that complex I mutants generate fewer reactive oxygen species than the wild type strain when exposed to PHS likely explains the PHS-resistant phenotype. As compared with the wild type strain, we also found that a strain containing a deletion in the gene encoding an AIF (apoptosis-inducing factor)-like protein is more resistant to PHS and H2O2. In contrast, a strain containing a deletion in a gene encoding an AMID (AIF-homologous mitochondrion-associated inducer of death)-like polypeptide is more sensitive to both drugs. These results indicate that N. crassa has the potential to be a model organism to investigate the molecular basis of programmed cell death in eukaryotic species.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Mutação , Neurospora crassa/metabolismo , Esfingosina/análogos & derivados , Apoptose/genética , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Fúngicas/genética , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurospora crassa/genética , Esfingosina/farmacologia
6.
Eukaryot Cell ; 6(7): 1097-107, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496127

RESUMO

Rho-4 mutants of the filamentous fungus Neurospora crassa lack septa and asexual spores (conidia) and grow slowly. In this report, localization of green fluorescent protein-tagged RHO-4 is used to elucidate the differences in factors controlling RHO-4 localization during vegetative growth versus asexual development. RHO-4 forms a ring at incipient vegetative septation sites that constricts with the formation of the septum toward the septal pore; RHO-4 persists around the septal pore after septum completion. During the formation of conidia, RHO-4 localizes to the primary septum but subsequently is relocalized to the cytoplasm after the placement of the secondary septum. Cytoplasmic localization and inactivation of RHO-4 are mediated by a direct physical interaction with RDI-1, a RHO guanosine nucleotide dissociation inhibitor. Inappropriate activation of the cyclic AMP-dependent protein kinase A pathway during vegetative growth causes mislocalization of RHO-4 away from septa to the cytoplasm, a process which was dependent upon RDI-1. An adenylate cyclase cr-1 mutant partially suppresses the aconidial defect of rho-4 mutants but only rarely suppresses the vegetative septation defect, indicating that conidial septation is negatively regulated by CR-1. These data highlight the differences in the regulation of septation during conidiation versus vegetative septation in filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurospora crassa , Esporos Fúngicos/metabolismo , Actinas/metabolismo , Sequência de Bases , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocalasinas/metabolismo , Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Hifas/citologia , Hifas/metabolismo , Dados de Sequência Molecular , Neurospora crassa/citologia , Neurospora crassa/fisiologia , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esporos Fúngicos/ultraestrutura
7.
Curr Genet ; 44(6): 329-38, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14564476

RESUMO

Chromosomal rearrangement is implicated in human cancers and hereditary diseases. Mechanisms generating chromosomal rearrangements may be shared by a variety of organisms. Spontaneous chromosomal rearrangements, especially large deletions, take place at high frequency in isolates that escape from heterokaryon incompatibility in Neurospora crassa. In this study, chromosomal rearrangements were detected in strains that had escaped from het-c heterokaryon incompatibility in N. crassa. A vc1 mutant carried a 20-kbp deletion covering five ORFs. A vc2 mutant carried a complex chromosome rearrangement with an 8-kbp deletion covering three ORFs, a 34-bp deletion and an 80-kbp inversion. The break-points of chromosome rearrangements in the vc1 and vc2 mutants all have direct repeats of 2 bp, similar to the break-points of some chromosome rearrangements associated with human cancer and genetic diseases. An ahc mutant carried a 31-kbp deletion covering at least 11 ORFs and a het-c deletion mutant carried a 7-kbp deletion covering two ORFs. Additional chromosomal rearrangements occurred in these two strains. These results indicate that escape from heterokaryon incompatibility can be used as a model system for chromosome rearrangement and DNA-repair studies. The impact of the chromosomal rearrangements is discussed, especially the deletion of the predicted ORFs on the phenotype of mutants.


Assuntos
Aberrações Cromossômicas , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos/genética , Neurospora crassa/genética , Sequência de Bases , Núcleo Celular/genética , Cromossomos Fúngicos/genética , Cruzamentos Genéticos , Elementos de DNA Transponíveis/genética , Genótipo , Dados de Sequência Molecular , Fenótipo , Recombinação Genética , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
8.
Proc Natl Acad Sci U S A ; 100(26): 15670-5, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14676319

RESUMO

Fungal type I polyketides (PKs) are synthesized by PK synthases (PKSs) and include well known secondary metabolites such as the anticholesterol drug lovastatin and the potent natural carcinogen aflatoxin. Other type I PKs are known to be virulence factors for some plant pathogens and pigments such as melanin. In this study, a phylogenomic approach was used to investigate the origin and diversity of fungal genes encoding putative PKSs that are predicted to synthesize type I PKs. The resulting genealogy, constructed by using the highly conserved PKS ketosynthase (KS) domain, indicated that: (i). Species within subphylum Pezizomycotina (phylum Ascomycota) but not early diverging ascomycetes, like Saccharomyces cerevisiae (Saccharomycotina) or Schizosaccharomyces pombe (Taphrinomycotina), had large numbers (7-25) of PKS genes. (ii). Bacteria and fungi had separate groups of PKS genes; the few exceptions are the likely result of horizontal gene transfer from bacteria to various sublineages of fungi. (iii). The bulk of genes encoding fungal PKSs fell into eight groups. Four groups were predicted to synthesize variously reduced PKs, and four groups were predicted to make unreduced PKs. (iv). Species within different classes of Pezizomycotina shared the same groups of PKS genes. (v). Different fungal genomes shared few putative orthologous PKS genes, even between closely related genomes in the same class or genus. (vi) The discontinuous distributions of orthologous PKSs among fungal species can be explained by gene duplication, divergence, and gene loss; horizontal gene transfer among fungi does not need to be invoked.


Assuntos
Ascomicetos/genética , Complexos Multienzimáticos/genética , Filogenia , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Bactérias/classificação , Bactérias/genética , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Duplicação Gênica , Variação Genética , Dados de Sequência Molecular
9.
EMBO J ; 21(18): 4841-50, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12234924

RESUMO

Nonself recognition during vegetative growth in filamentous fungi is mediated by heterokaryon incompatibility (het) loci. In Neurospora crassa, het-c is one of 11 het loci. Three allelic specificity groups, termed het-c(OR), het-c(PA) and het-c(GR), exist in natural populations. Heterokaryons or partial diploids that contain het-c alleles of alternative specificity show severe growth inhibition, repression of conidiation and hyphal compartmentation and death (HCD). Using epitope-tagged HET-C, we show that nonself recognition is mediated by the presence of a heterocomplex composed of polypeptides encoded by het-c alleles of alternative specificity. The HET-C heterocomplex localized to the plasma membrane (PM); PM-bound HET-C heterocomplexes occurred in all three het-c incompatible allelic interactions. Strains containing het-c constructs deleted for a predicted signal peptide sequence formed HET-C heterocomplexes in the cytoplasm and showed a growth arrest phenotype. Our finding is a step towards understanding nonself recognition mechanisms that operate during vegetative growth in filamentous fungi, and provides a model for investigating relationships between recognition mechanisms and cell death.


Assuntos
Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/fisiologia , Alelos , Sequência de Aminoácidos , Fracionamento Celular , Proteínas Fúngicas/genética , Genes Reporter , Hifas/citologia , Hifas/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Neurospora crassa/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA