Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564464

RESUMO

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD8/metabolismo
2.
J Immunol ; 204(6): 1607-1620, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32024700

RESUMO

Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1ß by neutrophil granulocytes. In this study, we show that in addition to IL-1ß, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1ß levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/patologia , Proteínas do Citoesqueleto/metabolismo , NADPH Oxidase 2/metabolismo , Osteomielite/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Osso e Ossos/imunologia , Linhagem Celular , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , NADPH Oxidase 2/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Osteomielite/genética , Osteomielite/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Superóxidos/imunologia , Superóxidos/metabolismo
3.
J Cell Mol Med ; 24(2): 1980-1992, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845480

RESUMO

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hematopoese , Proteínas de Membrana/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Células Germinativas/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Humanos , Lipoilação , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Front Immunol ; 10: 618, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001252

RESUMO

The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Histocompatibilidade/imunologia , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia
5.
J Vis Exp ; (140)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30451235

RESUMO

Dendritic cells and macrophages are crucial cells that form the first line of defense against pathogens. They also play important roles in the initiation of an adaptive immune response. Experimental work with these cells is rather challenging. Their abundance in organs and tissues is relatively low. As a result, they cannot be isolated in large numbers. They are also difficult to transfect with cDNA constructs. In the murine model, these problems can be partially overcome by in vitro differentiation from bone marrow progenitors in the presence of M-CSF for macrophages or GM-CSF for dendritic cells. In this way, it is possible to obtain large amounts of these cells from very few animals. Moreover, bone marrow progenitors can be transduced with retroviral vectors carrying cDNA constructs during early stages of cultivation prior to their differentiation into bone marrow derived dendritic cells and macrophages. Thus, retroviral transduction followed by differentiation in vitro can be used to express various cDNA constructs in these cells. The ability to express ectopic proteins substantially extends the range of experiments that can be performed on these cells, including live cell imaging of fluorescent proteins, tandem purifications for interactome analyses, structure-function analyses, monitoring of cellular functions with biosensors and many others. In this article, we describe a detailed protocol for retroviral transduction of murine bone marrow derived dendritic cells and macrophages with vectors coding for fluorescently-tagged proteins. On the example of two adaptor proteins, OPAL1 and PSTPIP2, we demonstrate its practical application in flow cytometry and microscopy. We also discuss the advantages and limitations of this approach.


Assuntos
Células da Medula Óssea/citologia , Células Dendríticas/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Macrófagos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Células Dendríticas/citologia , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/citologia , Camundongos , Retroviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA