Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 9(5): 1077-86, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22497602

RESUMO

With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular pharmacokinetics of peptides is limited. So far, most research has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Here, we studied the structure-activity relationship of peptides with respect to intracellular residence time and proteolytic breakdown. The peptides comprised a collection of interaction motifs of SH2 and SH3 domains with different charge but that were of similar size and carried an N-terminal fluorescein moiety. First, we show that electroporation is a highly powerful technique to introduce peptides with different charge and hydrophobicity in uniform yields. Remarkably, the peptides differed strongly in retention of intracellular fluorescence with half-lives ranging from only 1 to more than 10 h. Residence times were greatly increased for retro-inverso peptides, demonstrating that rapid loss of fluorescence is a function of peptide degradation rather than the physicochemical characteristics of the peptide. Differences in proteolytic sensitivity were further confirmed using fluorescence correlation spectroscopy as a separation-free analytical technique to follow degradation in crude cell lysates and also in intact cells. The results provide a straightforward analytical access to a better understanding of the principles of peptide stability inside cells and will therefore greatly assist the development of bioactive peptides.


Assuntos
Peptídeos/farmacocinética , Sequência de Aminoácidos , Linhagem Celular , Eletroporação , Citometria de Fluxo , Fluorescência , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Peptídeos/química , Peptidomiméticos , Espectrometria de Fluorescência , Relação Estrutura-Atividade
2.
Mol Pharmacol ; 79(4): 692-700, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21247935

RESUMO

Here, we demonstrate that coupling to N-hydroxypropyl methacrylamide (HPMA) copolymer greatly enhances the activity of apoptosis-inducing peptides inside cells. Peptides corresponding to the BH3 domain of Bid were coupled to a thioester-activated HPMA (28.5 kDa) via native chemical ligation in a simple one-pot synthesis. Peptides and polymer conjugates were introduced into cells either by electroporation or by conjugation to the cell-penetrating peptide nona-arginine. The molecular basis of the increased activity is elucidated in detail. Loading efficiency and intracellular residence time were assessed by confocal microscopy. Fluorescence correlation spectroscopy was used as a separation-free analytical technique to determine proteolytic degradation in crude cell lysates. HPMA conjugation strongly increased the half-life of the peptides in crude cell lysates and inside cells, revealing proteolytic protection as the basis for higher activity.


Assuntos
Espaço Intracelular/metabolismo , Metacrilatos/metabolismo , Peptídeos/metabolismo , Apoptose/fisiologia , Células HeLa , Humanos , Espaço Intracelular/química , Espaço Intracelular/fisiologia , Células Jurkat , Metacrilatos/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/fisiologia , Peptídeos/química , Peptídeos/fisiologia , Polímeros/química , Polímeros/metabolismo , Ligação Proteica/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína/fisiologia
3.
Br J Pharmacol ; 160(4): 958-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590591

RESUMO

BACKGROUND AND PURPOSE: In vitro assays that determine activities of drug candidates with isolated targets have only limited predictive value for activities in cellular assays. Poor membrane permeability and off-target binding are major reasons for such discrepancies. However, it still difficult to directly analyse off-target binding at the same time as target binding, on a subcellular level. Here, we present a combination of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) as a solution to this problem. EXPERIMENTAL APPROACH: The well-established dihydrofolate reductase inhibitor methotrexate and the kinase inhibitors PD173956 and purvalanol B were conjugated via polyethylene glycol linkers with the fluorophore Cy5. The cellular uptake and subcellular distribution of these compounds in single human cancer-derived cells were investigated by confocal laser scanning microscopy. In addition, molecular interactions inside the cell with the respective target proteins and off-target binding were detected simultaneously in the nanomolar range by FCCS and FCS, respectively, using cells expressing green fluorescent protein fusion proteins of dihydrofolate reductase and Abelson kinase 1. KEY RESULTS: Large differences in the interaction patterns were found for these compounds. For methotrexate-Cy5, drug-target interactions could be detected and dissociation constants determined. In contrast, PD173956-Cy5 showed strong interactions with intracellular high-molecular weight structures, other than its target. CONCLUSIONS AND IMPLICATIONS: The combination of FCS and FCCS provides a powerful means to assess subcellular pharmacokinetics and dynamics of drug candidates at nanomolar concentrations.


Assuntos
Antineoplásicos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Absorção , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Adenina/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular , Feminino , Corantes Fluorescentes/química , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacocinética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Citometria de Varredura a Laser , Metotrexato/química , Metotrexato/metabolismo , Metotrexato/farmacocinética , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Polietilenoglicóis/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Piridonas/metabolismo , Piridonas/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Proteínas Recombinantes de Fusão/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
4.
Mol Immunol ; 46(16): 3269-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19699529

RESUMO

Antibodies of the IgG4 subclass, directed against cell surface antigens have received attention as therapeutic molecules due to their poor induction of the complement system. The MHC class II-directed IgG4 antibody 1D09C3 has been explored for the treatment of lymphomas. The mechanism-of-action is still controversial. Apoptosis induction following HLA-DR engagement has been proposed. However, the validity of these results has been questioned by the observation that antibodies may induce formation of cell aggregates and cell death is induced upon dispersion of these aggregates prior to the quantification of cell death by flow cytometry. Here we address the capacity of 1D09C3 to induce apoptosis in vitro, also taking account of the recently reported Fab arm exchange of IgG4 antibodies. 1D09C3 induces formation of tight cellular aggregates that can only be dispersed at the expense of massive cell damage and death. Using dual color fluorescence cross-correlation spectroscopy (FCCS) we demonstrate that also this antibody undergoes Fab arm exchange in the presence of IgG4. FCCS is a powerful technique to investigate the molecular mechanism of Fab arm exchange using minute amounts of reagents. Following exchange, the functionally monovalent 1D09C3 chimeras loose their ability to induce aggregate formation of HLA-DR-positive cells. Neither functionally monovalent nor bivalent 1D09C3 antibodies induce cell death or apoptosis in myeloma target cells, when microscopy instead of flow cytometry is employed as the analytical technique. Our results indicate that the activity of 1D09C3 in vitro may have been a consequence of assay design rather than an ability to induce HLA-DR-dependent cell death.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Antígenos HLA-DR/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Imunoglobulina G/farmacologia , Linfoma/tratamento farmacológico , Linfoma/imunologia , Ligação Proteica/imunologia
5.
J Biol Chem ; 279(1): 677-85, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14557256

RESUMO

To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.


Assuntos
Antígenos CD40/fisiologia , NF-kappa B/metabolismo , Proteínas/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Ligante de CD40/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fator 1 Associado a Receptor de TNF , Fator 2 Associado a Receptor de TNF , Fator 3 Associado a Receptor de TNF , Transfecção
6.
Eur J Biochem ; 269(19): 4819-29, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12354113

RESUMO

To gain insight in the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF4) we analyzed GFP chimeras of full-length TRAF4 and various deletion mutants derived thereof. While TRAF4-GFP (T4-GFP) was clearly localized in the cytoplasm, the N-terminal deletion mutant, T4(259-470), comprising the TRAF domain of the molecule, and a C-terminal deletion mutant consisting mainly of the RING and zinc finger domains of TRAF4 were both localized predominantly to the nucleus. Passive nuclear localization of T4(259-470) can be ruled out as the TRAF domain of TRAF4 was sufficient to form high molecular weight complexes. T4(259-470) recruited full-length TRAF4 into the nucleus whereas TRAF4 was unable to change the nuclear localization of T4(259-470). Thus, it seems that individual T4(259-470) mutant molecules are sufficient to direct the respective TRAF4-T4(259-470) heteromeric complexes into the nucleus. In cells forming cell-cell contacts, TRAF4 was recruited to the sites of contact via its C-TRAF domain. The expression of some TRAF proteins is regulated by the NF-kappaB pathway. Thus, we investigated whether this pathway is also involved in the regulation of the TRAF4 gene. Indeed, in primary T-cells and Jurkat cells stimulated with the NF-kappaB inducers TNF or phorbol 12-myristate 13-acetate (PMA), TRAF4-mRNA was rapidly up-regulated. In Jurkat T-cells deficient for I-kappaB kinase gamma (IKKgamma, also known as NEMO), an essential component of the NF-kappaB-inducing-IKK complex, induction of TRAF4 was completely inhibited. In cells deficient for RIP (receptor interactive protein), an essential signaling intermediate of TNF-dependent NF-kappaB activation, TNF-, but not PMA-induced up-regulation of TRAF4 was blocked. These data suggest that activation of the NF-kappaB pathway is involved in up-regulation of TRAF4 in T-cells.


Assuntos
Proteínas/genética , Proteínas/metabolismo , Adesão Celular , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Quinase I-kappa B , Técnicas In Vitro , Células Jurkat , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ativação Linfocitária , Microscopia Confocal , Microscopia de Fluorescência , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator 4 Associado a Receptor de TNF , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA