Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108646

RESUMO

Drosophila melanogaster DAxud1 is a transcription factor that belongs to the Cysteine Serine Rich Nuclear Protein (CSRNP) family, conserved in metazoans, with a transcriptional transactivation activity. According to previous studies, this protein promotes apoptosis and Wnt signaling-mediated neural crest differentiation in vertebrates. However, no analysis has been conducted to determine what other genes it might control, especially in connection with cell survival and apoptosis. To partly answer this question, this work analyzes the role of Drosophila DAxud1 using Targeted-DamID-seq (TaDa-seq), which allows whole genome screening to determine in which regions it is most frequently found. This analysis confirmed the presence of DAxud1 in groups of pro-apoptotic and Wnt pathway genes, as previously described; furthermore, stress resistance genes that coding heat shock protein (HSP) family genes were found as hsp70, hsp67, and hsp26. The enrichment of DAxud1 also identified a DNA-binding motif (AYATACATAYATA) that is frequently found in the promoters of these genes. Surprisingly, the following analyses demonstrated that DAxud1 exerts a repressive role on these genes, which are necessary for cell survival. This is coupled with the pro-apoptotic and cell cycle arrest roles of DAxud1, in which repression of hsp70 complements the maintenance of tissue homeostasis through cell survival modulation.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409639

RESUMO

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Assuntos
Sobrevivência Celular/genética , Reparo do DNA , Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleases/genética , Feminino , Fibroblastos , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteostase/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/metabolismo
3.
J Cell Biol ; 219(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31940424

RESUMO

Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hemócitos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fagocitose , Canais de Potencial de Receptor Transitório/metabolismo , Actomiosina/genética , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Sinalização do Cálcio , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Hemócitos/imunologia , Lisossomos/genética , Macrófagos/imunologia , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Fatores de Tempo , Canais de Potencial de Receptor Transitório/genética
4.
PLoS One ; 13(4): e0194344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621246

RESUMO

BACKGROUND: Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS: Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS: Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Drosophila/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Drosophila/embriologia , Desenvolvimento Embrionário/genética , Metabolismo Energético , Larva , Células-Tronco Neurais , Estresse Fisiológico
5.
Biomolecules ; 7(1)2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272317

RESUMO

Transfer RNAs (tRNAs) harbor a subset of post-transcriptional modifications required for structural stability or decoding function. N6-threonylcarbamoyladenosine (t6A) is a universally conserved modification found at position 37 in tRNA that pair A-starting codons (ANN) and is required for proper translation initiation and to prevent frame shift during elongation. In its absence, the synthesis of aberrant proteins is likely, evidenced by the formation of protein aggregates. In this work, our aim was to study the relationship between t6A-modified tRNAs and protein synthesis homeostasis machinery using Drosophila melanogaster. We used the Gal4/UAS system to knockdown genes required for t6A synthesis in a tissue and time specific manner and in vivo reporters of unfolded protein response (UPR) activation. Our results suggest that t6A-modified tRNAs, synthetized by the threonyl-carbamoyl transferase complex (TCTC), are required for organismal growth and imaginal cell survival, and is most likely to support proper protein synthesis.


Assuntos
Adenosina/análogos & derivados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , RNA de Transferência/metabolismo , Adenosina/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Resposta a Proteínas não Dobradas
6.
J Biol Chem ; 290(30): 18699-707, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26063805

RESUMO

N(6)-Threonylcarbamoyl-adenosine (t(6)A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAi (Met)). Yeast lacking central components of the t(6)A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t(6)A synthesis. In Drosophila and in mammals, tRNAi (Met) is a limiting factor for cell and animal growth. We report that the t(6)A-modified form of tRNAi (Met) is the actual limiting factor. We show that changing the proportion of t(6)A-modified tRNAi (Met), by expression of an un-modifiable tRNAi (Met) or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t(6)A-modified tRNA, determines growth potential in eukaryotic cells.


Assuntos
Proliferação de Células/genética , RNA de Transferência de Metionina/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/genética , Proteínas de Transporte Vesicular/genética , Animais , Códon de Iniciação/genética , Drosophila/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Processamento Pós-Transcricional do RNA/genética , Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/biossíntese
7.
Development ; 140(6): 1282-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23444356

RESUMO

Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Organogênese/genética , Organogênese/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
8.
PLoS One ; 8(1): e53858, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326522

RESUMO

The CSRNP (cystein-serine-rich nuclear protein) transcription factors are conserved from Drosophila to human. Functional studies in mice, through knockout for each of their paralogs, have resulted insufficient to elucidate the function of this family of proteins in vertebrate development. Previously, we described the function of the zebrafish ortholog, Csnrp1/Axud1, showing its essential role in the survival and proliferation of cephalic progenitors. To extend our understanding of this family, we have studied the function of its paralog csrnp1a. Our results show that csrnp1a is expressed from 0 hpf, until larval stages, particularly in cephalic territories and in the intermediate cell mass (ICM). Using morpholinos in wild type and transgenic lines we observed that Csrnp1a knockdown generates a mild reduction in head size and a depletion of blood cells in circulation. This was combined with in situ hybridizations to analyze the expression of different mesodermal and primitive hematopoiesis markers. Morphant embryos have impaired blood formation without disruption of mesoderm specification, angiogenesis or heart development. The reduction of circulating blood cells occurs at the hematopoietic progenitor level, affecting both the erythroid and myeloid lineages. In addition, cell proliferation was also altered in hematopoietic anterior sites, specifically in spi1 expression domain. These and previous observations suggest an important role of Csnrps transcription factors in progenitor biology, both in the neural and hematopoietic linages.


Assuntos
Cabeça , Hematopoese/genética , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Contagem de Células Sanguíneas , Linhagem da Célula , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/anatomia & histologia , Cabeça/crescimento & desenvolvimento , Cabeça/patologia , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Biol. Res ; 44(1): 25-34, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-591861

RESUMO

The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.


Assuntos
Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fucosiltransferases/metabolismo , Guanosina Difosfato Fucose/metabolismo , Guanosina Difosfato Manose/metabolismo , Receptores Notch/metabolismo , Asas de Animais/metabolismo , Alelos , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Endocitose/genética , Fucosiltransferases/genética , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Manose/genética , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Notch/genética , Transdução de Sinais , Asas de Animais/anatomia & histologia
10.
Genetics ; 183(3): 1005-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737745

RESUMO

The Drosophila melanogaster wing is a model system for analyzing the genetic control of organ size, shape, and pattern formation. The formation of the wing involves a variety of processes, such as cell growth, proliferation, pattern formation, and differentiation. These developmental processes are under genetic control, and many genes participating in specific aspects of wing development have already being characterized. In this work, we aim to identify novel genes regulating wing growth and patterning. To this end, we have carried out a gain-of-function screen generating novel P-UAS (upstream activating sequences) insertions allowing forced gene expression. We produced 3,340 novel P-UAS insertions and isolated 300 that cause a variety of wing phenotypes in combination with a Gal4 driver expressed exclusively in the central domain of the presumptive wing blade. The mapping of these P-UAS insertion sites allowed us to identify the gene that causes the gain-of-function phenotypes. We show that a fraction of these phenotypes are related to the induction of cell death in the domain of ectopic gene expression. Finally, we present a preliminary characterization of a gene identified in the screen, the function of which is required for the development of the L5 longitudinal vein.


Assuntos
Padronização Corporal/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/metabolismo , Animais , Sítios de Ligação/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Imuno-Histoquímica , Hibridização In Situ , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Modelos Biológicos , Mutagênese Insercional , Mutação , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Asas de Animais/crescimento & desenvolvimento
11.
Dev Dyn ; 238(8): 2034-43, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19544579

RESUMO

The CSRNP (cystein-serine-rich nuclear protein) family has been conserved from Drosophila to human. Although knockout mice for each of the mammalian proteins have been generated, their function during vertebrate development has remained elusive. As an alternative to obtain insights on CSRNP's role in development, we have analysed the expression pattern and function of one member of this family, axud1, during zebrafish development. Our expression analysis indicates that axud1 is expressed from cleavage to larval stages in a dynamic pattern, becoming restricted after gastrulation to anterior regions of the developing neuraxis and later on concentrated predominantly in proliferating domains of the brain. Knockdown analysis using antisense morpholinos shows that reducing Axud1 levels impairs neural progenitor cell proliferation and survival, revealing an essential function of this gene for the growth of cephalic derivatives. The brain growth phenotypes elicited by decreasing Axud1 expression are specific and independent of anterior-posterior patterning events, initial establishment of neural progenitors, or neural differentiation occurring in this tissue. However, Axud1 is necessary for six3.1 expression and is positively regulated by sonic hedgehog. Phylogenetic examination shows that axud1 is likely to be the ortholog of the only member of this family present in Drosophila, as well as to the previously described mouse CSRNP1 and to human AXUD1 (Axin upregulated-1). Thus, we provide evidence as to the role of axud1 in brain growth in vertebrates.


Assuntos
Encéfalo/embriologia , Proteínas Nucleares/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Encéfalo/citologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , DNA Complementar/genética , Células-Tronco Embrionárias/citologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Proteínas Nucleares/genética , Filogenia , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteína Homeobox SIX3
12.
Mech Dev ; 126(3-4): 184-97, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19084594

RESUMO

Cell division rates and apoptosis sculpt the growing organs, and its regulation implements the developmental programmes that define organ size and shape. The balance between oncogenes and tumour suppressors modulate the cell cycle and the apoptotic machinery to achieve this goal, promoting and restricting proliferation or, in certain conditions, inducing the apoptotic programme. Analysis of human cancer cells with mutation in AXIN gene has uncovered the potential function of AXUD1 as a tumour suppressor. It has been described that Human AXUD1 is a nuclear protein. We find that a DAxud1-GFP fusion protein is localised to the nucleus during interphase, where it accumulates associated to the nuclear envelope, but becomes distributed in a diffused pattern in the nucleus of mitotic cells. We have analysed the function of the Drosophila AXUD1 homologue, and find that DAxud1 behaves as a tumour suppressor that regulates the proliferation rhythm of imaginal cells. Knocking down the activity of DAxud1 enhances the proliferation of these cells, causing in addition a reduction in cell size. Conversely, the increase in DAxud1 expression impedes cell cycle progression at mitosis through disturbance of Cdk1 activity, and induces the apoptosis of these cells in a JNK-dependent manner.


Assuntos
Apoptose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Tamanho Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Tamanho do Órgão , Fenótipo , Transporte Proteico , Proteínas Tirosina Fosfatases/metabolismo , Frações Subcelulares/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Asas de Animais/citologia , Asas de Animais/enzimologia
13.
Dev Biol ; 241(2): 289-301, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11784112

RESUMO

The neural crest is a unique cell population induced at the lateral border of the neural plate. Neural crest is not produced at the anterior border of the neural plate, which is fated to become forebrain. Here, the roles of BMPs, FGFs, Wnts, and retinoic acid signaling in neural crest induction were analyzed by using an assay developed for investigating the posteriorization of the neural plate. Using specific markers for the anterior neural plate border and the neural crest, the posterior end of early neurula embryos was shown to be able to transform the anterior neural plate border into neural crest cells. In addition, tissue expressing anterior neural plate markers, induced by an intermediate level of BMP activity, was transformed into neural crest by posteriorizing signals. This transformation was mimicked by bFGF, Wnt-8, or retinoic acid treatment and was also inhibited by expression of the dominant negative forms of the FGF receptor, the retinoic acid receptor, and Wnt signaling molecules. The transformation of the anterior neural plate border into neural crest cells was also achieved in whole embryos, by retinoic acid treatment or by use of a constitutively active form of the retinoic acid receptor. By analyzing the expression of mesodermal markers and various graft experiments, the expression of the mutant retinoic acid receptor was shown to directly affect the ectoderm. We thereby propose a two-step model for neural crest induction. Initially, BMP levels intermediate to those required for neural plate and epidermal specification induce neural folds with an anterior character along the entire neural plate border. Subsequently, the most posterior region of this anterior neural plate border is transformed into the neural crest by the posteriorizing activity of FGFs, Wnts, and retinoic acid signals. We discuss a unifying model where lateralizing and posteriorizing signals are presented as two stages of the same inductive process required for neural crest induction.


Assuntos
Padronização Corporal/fisiologia , Indução Embrionária/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Crista Neural/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores de Fatores de Crescimento , Tretinoína/fisiologia , Proteínas de Peixe-Zebra , Animais , Biomarcadores , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Receptores de Proteínas Morfogenéticas Ósseas , Proteínas Morfogenéticas Ósseas/fisiologia , Linhagem da Célula , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Indução Embrionária/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Gástrula/efeitos dos fármacos , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Microinjeções , Crista Neural/citologia , Prosencéfalo/embriologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/fisiologia , Receptor alfa de Ácido Retinoico , Tretinoína/farmacologia , Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis/embriologia , Xenopus laevis/genética
14.
Biol. Res ; 35(2): 267-275, 2002.
Artigo em Inglês | LILACS | ID: lil-323349

RESUMO

The neural crest is induced at the border between the neural plate and the epidermis. A complex set of signals is required for the specification of the crest cells between the epidermis and the neural plate. Here we discuss evidence supporting a model for neural crest induction in which different signals contribute in a sequential order. First, a gradient of bone morphogenic proteins (BMPs) is established in the ectoderm that results in segregation into neural plate, neural folds and epidermis at increasing levels of BMP activity. Thus, the neural folds are induced at a precise threshold concentration of BMP, but this neural fold has an anterior character. In a second step, these anterior neural folds are transformed into prospective neural crest by posteriorizing signals due to fibroblast growth factor, Wnts and retinoic acid. Finally, the induced cells interact to complete neural crest induction by a process that requires Notch/Delta signaling. Once neural crest formation has been induced by this combination of extracellular and intracellular signals, a cascade of transcription factors is activated in these cells that culminates in the ultimate steps of neural crest differentiation (AU)#SP#


Assuntos
Animais , Comunicação Celular , Crista Neural , Transdução de Sinais , Fatores de Transcrição , Proteínas Morfogenéticas Ósseas , Galinhas , Proteínas de Membrana , Crista Neural , Transativadores , Xenopus , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA