Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 937060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966201

RESUMO

Postsynaptic cytosolic Cl- concentration determines whether GABAergic and glycinergic synapses are inhibitory or excitatory. We have shown that nitric oxide (NO) initiates the release of Cl- from acidic internal stores into the cytosol of retinal amacrine cells (ACs) thereby elevating cytosolic Cl-. In addition, we found that cystic fibrosis transmembrane conductance regulator (CFTR) expression and Ca2+ elevations are necessary for the transient effects of NO on cytosolic Cl- levels, but the mechanism remains to be elucidated. Here, we investigated the involvement of TMEM16A as a possible link between Ca2+ elevations and cytosolic Cl- release. TMEM16A is a Ca2+-activated Cl- channel that is functionally coupled with CFTR in epithelia. Both proteins are also expressed in neurons. Based on this and its Ca2+ dependence, we test the hypothesis that TMEM16A participates in the NO-dependent elevation in cytosolic Cl- in ACs. Chick retina ACs express TMEM16A as shown by Western blot analysis, single-cell PCR, and immunocytochemistry. Electrophysiology experiments demonstrate that TMEM16A functions in amacrine cells. Pharmacological inhibition of TMEM16A with T16inh-AO1 reduces the NO-dependent Cl- release as indicated by the diminished shift in the reversal potential of GABAA receptor-mediated currents. We confirmed the involvement of TMEM16A in the NO-dependent Cl- release using CRISPR/Cas9 knockdown of TMEM16A. Two different modalities targeting the gene for TMEM16A (ANO1) were tested in retinal amacrine cells: an all-in-one plasmid vector and crRNA/tracrRNA/Cas9 ribonucleoprotein. The all-in-one CRISPR/Cas9 modality did not change the expression of TMEM16A protein and produced no change in the response to NO. However, TMEM16A-specific crRNA/tracrRNA/Cas9 ribonucleoprotein effectively reduces both TMEM16A protein levels and the NO-dependent shift in the reversal potential of GABA-gated currents. These results show that TMEM16A plays a role in the NO-dependent Cl- release from retinal ACs.

2.
Front Cell Neurosci ; 15: 726605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456687

RESUMO

The strength and sign of synapses involving ionotropic GABA and glycine receptors are dependent upon the Cl- gradient. We have shown that nitric oxide (NO) elicits the release of Cl- from internal acidic stores in retinal amacrine cells (ACs); temporarily altering the Cl- gradient and the strength or even sign of incoming GABAergic or glycinergic synapses. The underlying mechanism for this effect of NO requires the cystic fibrosis transmembrane regulator (CFTR) but the link between NO and CFTR activation has not been determined. Here, we test the hypothesis that NO-dependent Ca2+ elevations activate the Ca2+-dependent adenylate cyclase 1 (AdC1) leading to activation of protein kinase A (PKA) whose activity is known to open the CFTR channel. Using the reversal potential of GABA-gated currents to monitor cytosolic Cl-, we established the requirement for Ca2+ elevations. Inhibitors of AdC1 suppressed the NO-dependent increases in cytosolic Cl- whereas inhibitors of other AdC subtypes were ineffective suggesting that AdC1 is involved. Inhibition of PKA also suppressed the action of NO. To address the sufficiency of this pathway in linking NO to elevations in cytosolic Cl-, GABA-gated currents were measured under internal and external zero Cl- conditions to isolate the internal Cl- store. Activators of the cAMP pathway were less effective than NO in producing GABA-gated currents. However, coupling the cAMP pathway activators with the release of Ca2+ from stores produced GABA-gated currents indistinguishable from those stimulated with NO. Together, these results demonstrate that cytosolic Ca2+ links NO to the activation of CFTR and the elevation of cytosolic Cl-.

3.
PLoS One ; 13(7): e0201184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044876

RESUMO

Our lab has previously shown that nitric oxide (NO) can alter the synaptic response properties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated current, which can convert inhibitory synapses into excitatory synapses. Recently, we have shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a, Dynole 34-2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps were used to measure the NO-dependent shift in the reversal potential of the GABA-gated currents under both conditions. Our results reveal that activating the synaptic vesicle cycle in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. However, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift in the reversal potential for the GABA-gated currents, we also tested the effects of the clathrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift. These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of synaptic vesicles.


Assuntos
Células Amácrinas/metabolismo , Cetilpiridínio/metabolismo , Dinaminas/metabolismo , Endocitose , Óxido Nítrico/metabolismo , Vesículas Sinápticas/metabolismo , Actinas/metabolismo , Células Amácrinas/efeitos dos fármacos , Animais , Ânions/metabolismo , Proteínas Aviárias/metabolismo , Canais de Cálcio/metabolismo , Técnicas de Cultura de Células , Embrião de Galinha , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
4.
J Neurophysiol ; 118(5): 2842-2852, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835528

RESUMO

γ-Amino butyric acid (GABA) and glycine typically mediate synaptic inhibition because their ligand-gated ion channels support the influx of Cl- However, the electrochemical gradient for Cl- across the postsynaptic plasma membrane determines the voltage response of the postsynaptic cell. Typically, low cytosolic Cl- levels support inhibition, whereas higher levels of cytosolic Cl- can suppress inhibition or promote depolarization. We previously reported that nitric oxide (NO) releases Cl- from acidic organelles and transiently elevates cytosolic Cl-, making the response to GABA and glycine excitatory. In this study, we test the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the NO-dependent efflux of organellar Cl- We first establish the mRNA and protein expression of CFTR in our model system, cultured chick retinal amacrine cells. Using whole cell voltage-clamp recordings of currents through GABA-gated Cl- channels, we examine the effects of pharmacological inhibition of CFTR on the NO-dependent release of internal Cl- To interfere with the expression of CFTR, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. We find that both pharmacological inhibition and CRISPR/Cas9-mediated knockdown of CFTR block the ability of NO to release Cl- from internal stores. These results demonstrate that CFTR is required for the NO-dependent efflux of Cl- from acidic organelles.NEW & NOTEWORTHY Although CFTR function has been studied extensively in the context of epithelia, relatively little is known about its function in neurons. We show that CFTR is involved in an NO-dependent release of Cl- from acidic organelles. This internal function of CFTR is particularly relevant to neuronal physiology because postsynaptic cytosolic Cl- levels determine the outcome of GABA- and glycinergic synaptic signaling. Thus the CFTR may play a role in regulating synaptic transmission.


Assuntos
Células Amácrinas/metabolismo , Proteínas Aviárias/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Óxido Nítrico/metabolismo , Organelas/metabolismo , Animais , Ânions/metabolismo , Proteínas Aviárias/genética , Sistemas CRISPR-Cas , Células Cultivadas , Embrião de Galinha , Galinhas , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Técnicas de Silenciamento de Genes , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Am J Physiol Endocrinol Metab ; 309(8): E715-26, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26306596

RESUMO

Proinflammatory cytokines impact islet ß-cell mass and function by altering the transcriptional activity within pancreatic ß-cells, producing increases in intracellular nitric oxide abundance and the synthesis and secretion of immunomodulatory proteins such as chemokines. Herein, we report that IL-1ß, a major mediator of inflammatory responses associated with diabetes development, coordinately and reciprocally regulates chemokine and insulin secretion. We discovered that NF-κB controls the increase in chemokine transcription and secretion as well as the decrease in both insulin secretion and proliferation in response to IL-1ß. Nitric oxide production, which is markedly elevated in pancreatic ß-cells exposed to IL-1ß, is a negative regulator of both glucose-stimulated insulin secretion and glucose-induced increases in intracellular calcium levels. By contrast, the IL-1ß-mediated production of the chemokines CCL2 and CCL20 was not influenced by either nitric oxide levels or glucose concentration. Instead, the synthesis and secretion of CCL2 and CCL20 in response to IL-1ß were dependent on NF-κB transcriptional activity. We conclude that IL-1ß-induced transcriptional reprogramming via NF-κB reciprocally regulates chemokine and insulin secretion while also negatively regulating ß-cell proliferation. These findings are consistent with NF-κB as a major regulatory node controlling inflammation-associated alterations in islet ß-cell function and mass.


Assuntos
Quimiocinas/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocinas/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Immunoblotting , Insulina/genética , Secreção de Insulina , Insulinoma , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Consumo de Oxigênio , Neoplasias Pancreáticas , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína S9 Ribossômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Tumorais Cultivadas
6.
J Neurophysiol ; 87(3): 1426-39, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11877517

RESUMO

The diverse functions of retinal amacrine cells are reliant on the physiological properties of their synapses. Here we examine the role of mitochondria as Ca(2+) buffering organelles in synaptic transmission between GABAergic amacrine cells. We used the protonophore p-trifluoromethoxy-phenylhydrazone (FCCP) to dissipate the membrane potential across the inner mitochondrial membrane that normally sustains the activity of the mitochondrial Ca(2+) uniporter. Measurements of cytosolic Ca(2+) levels reveal that prolonged depolarization-induced Ca(2+) elevations measured at the cell body are altered by inhibition of mitochondrial Ca(2+) uptake. Furthermore, an analysis of the ratio of Ca(2+) efflux on the plasma membrane Na-Ca exchanger to influx through Ca(2+) channels during voltage steps indicates that mitochondria can also buffer Ca(2+) loads induced by relatively brief stimuli. Importantly, we also demonstrate that mitochondrial Ca(2+) uptake operates at rest to help maintain low cytosolic Ca(2+) levels. This aspect of mitochondrial Ca(2+) buffering suggests that in amacrine cells, the normal function of Ca(2+)-dependent mechanisms would be contingent upon ongoing mitochondrial Ca(2+) uptake. To test the role of mitochondrial Ca(2+) buffering at amacrine cell synapses, we record from amacrine cells receiving GABAergic synaptic input. The Ca(2+) elevations produced by inhibition of mitochondrial Ca(2+) uptake are localized and sufficient in magnitude to stimulate exocytosis, indicating that mitochondria help to maintain low levels of exocytosis at rest. However, we found that inhibition of mitochondrial Ca(2+) uptake during evoked synaptic transmission results in a reduction in the charge transferred at the synapse. Recordings from isolated amacrine cells reveal that this is most likely due to the increase in the inactivation of presynaptic Ca(2+) channels observed in the absence of mitochondrial Ca(2+) buffering. These results demonstrate that mitochondrial Ca(2+) buffering plays a critical role in the function of amacrine cell synapses.


Assuntos
Células Amácrinas/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Células Amácrinas/citologia , Animais , Bário/farmacocinética , Canais de Cálcio Tipo L/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Embrião de Galinha , Potenciais Evocados/fisiologia , Exocitose/fisiologia , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Técnicas de Patch-Clamp , Potássio/farmacologia , Prótons , Sódio/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA