Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurology ; 96(10): e1443-e1452, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495377

RESUMO

OBJECTIVE: To develop a diagnostic test that stratifies epileptic seizures (ES) from psychogenic nonepileptic seizures (PNES) by developing a multimodal algorithm that integrates plasma concentrations of selected immune response-associated proteins and patient clinical risk factors for seizure. METHODS: Daily blood samples were collected from patients evaluated in the epilepsy monitoring unit within 24 hours after EEG confirmed ES or PNES and plasma was isolated. Levels of 51 candidate plasma proteins were quantified using an automated, multiplexed, sandwich ELISA and then integrated and analyzed using our diagnostic algorithm. RESULTS: A 51-protein multiplexed ELISA panel was used to determine the plasma concentrations of patients with ES, patients with PNES, and healthy controls. A combination of protein concentrations, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), intercellular adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein-2 (MCP-2), and tumor necrosis factor-receptor 1 (TNF-R1) indicated a probability that a patient recently experienced a seizure, with TRAIL and ICAM-1 levels higher in PNES than ES and MCP-2 and TNF-R1 levels higher in ES than PNES. The diagnostic algorithm yielded an area under the receiver operating characteristic curve (AUC) of 0.94 ± 0.07, sensitivity of 82.6% (95% confidence interval [CI] 62.9-93.0), and specificity of 91.6% (95% CI 74.2-97.7). Expanding the diagnostic algorithm to include previously identified PNES risk factors enhanced diagnostic performance, with AUC of 0.97 ± 0.05, sensitivity of 91.3% (95% CI 73.2-97.6), and specificity of 95.8% (95% CI 79.8-99.3). CONCLUSIONS: These 4 plasma proteins could provide a rapid, cost-effective, and accurate blood-based diagnostic test to confirm recent ES or PNES. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that variable levels of 4 plasma proteins, when analyzed by a diagnostic algorithm, can distinguish PNES from ES with sensitivity of 82.6% and specificity of 91.6%.


Assuntos
Proteínas Sanguíneas/análise , Encefalite/sangue , Encefalite/complicações , Epilepsia/etiologia , Convulsões/etiologia , Adolescente , Adulto , Algoritmos , Anticonvulsivantes/uso terapêutico , Área Sob a Curva , Diagnóstico Diferencial , Eletroencefalografia , Epilepsia/tratamento farmacológico , Feminino , Humanos , Masculino , Transtornos Mentais/etiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Convulsões/tratamento farmacológico , Adulto Jovem
2.
J Neurosci ; 35(50): 16463-78, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674871

RESUMO

Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4(+) T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT: Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating microglial activation and by slowing degradation of neuronal cell bodies and termini in MPTP-intoxicated mice. The protective mechanism arises from altering a Th1/Th2 immune cytokine response into an anti-inflammatory and neuronal sparing profile. These results are directly applicable for the development of novel PD therapies.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/imunologia , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/imunologia , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/farmacologia , Receptores de Peptídeo Intestinal Vasoativo/agonistas , Animais , Linfócitos T CD4-Positivos/metabolismo , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Citocinas/metabolismo , Humanos , Imuno-Histoquímica , Intoxicação por MPTP/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Oligopeptídeos/farmacocinética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Baço/citologia , Baço/efeitos dos fármacos , Substância Negra/enzimologia , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA