Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Chem Lab Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38872409

RESUMO

OBJECTIVES: Minimal residual disease (MRD) status in multiple myeloma (MM) is an important prognostic biomarker. Personalized blood-based targeted mass spectrometry detecting M-proteins (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to MRD-assessment in bone marrow. However, MS-MRD still comprises of manual steps that hamper upscaling of MS-MRD testing. Here, we introduce a proof-of-concept for a novel workflow using data independent acquisition-parallel accumulation and serial fragmentation (dia-PASEF) and automated data processing. METHODS: Using automated data processing of dia-PASEF measurements, we developed a workflow that identified unique targets from MM patient sera and personalized protein sequence databases. We generated patient-specific libraries linked to dia-PASEF methods and subsequently quantitated and reported M-protein concentrations in MM patient follow-up samples. Assay performance of parallel reaction monitoring (prm)-PASEF and dia-PASEF workflows were compared and we tested mixing patient intake sera for multiplexed target selection. RESULTS: No significant differences were observed in lowest detectable concentration, linearity, and slope coefficient when comparing prm-PASEF and dia-PASEF measurements of serial dilutions of patient sera. To improve assay development times, we tested multiplexing patient intake sera for target selection which resulted in the selection of identical clonotypic peptides for both simplex and multiplex dia-PASEF. Furthermore, assay development times improved up to 25× when measuring multiplexed samples for peptide selection compared to simplex. CONCLUSIONS: Dia-PASEF technology combined with automated data processing and multiplexed target selection facilitated the development of a faster MS-MRD workflow which benefits upscaling and is an important step towards the clinical implementation of MS-MRD.

2.
Clin Chem Lab Med ; 62(8): 1626-1635, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38332688

RESUMO

OBJECTIVES: Multiple myeloma (MM) is a plasma cell malignancy characterized by a monoclonal expansion of plasma cells that secrete a characteristic M-protein. This M-protein is crucial for diagnosis and monitoring of MM in the blood of patients. Recent evidence has emerged suggesting that N-glycosylation of the M-protein variable (Fab) region contributes to M-protein pathogenicity, and that it is a risk factor for disease progression of plasma cell disorders. Current methodologies lack the specificity to provide a site-specific glycoprofile of the Fab regions of M-proteins. Here, we introduce a novel glycoproteogenomics method that allows detailed M-protein glycoprofiling by integrating patient specific Fab region sequences (genomics) with glycoprofiling by glycoproteomics. METHODS: Glycoproteogenomics was used for the detailed analysis of de novo N-glycosylation sites of M-proteins. First, Genomic analysis of the M-protein variable region was used to identify de novo N-glycosylation sites. Subsequently glycopeptide analysis with LC-MS/MS was used for detailed analysis of the M-protein glycan sites. RESULTS: Genomic analysis uncovered a more than two-fold increase in the Fab Light Chain N-glycosylation of M-proteins of patients with Multiple Myeloma compared to Fab Light Chain N-glycosylation of polyclonal antibodies from healthy individuals. Subsequent glycoproteogenomics analysis of 41 patients enrolled in the IFM 2009 clinical trial revealed that the majority of the Fab N-glycosylation sites were fully occupied with complex type glycans, distinguishable from Fc region glycans due to high levels of sialylation, fucosylation and bisecting structures. CONCLUSIONS: Together, glycoproteogenomics is a powerful tool to study de novo Fab N-glycosylation in plasma cell dyscrasias.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Glicosilação , Proteômica/métodos , Espectrometria de Massas em Tandem , Glicoproteínas/metabolismo , Cromatografia Líquida , Proteínas do Mieloma/metabolismo , Proteínas do Mieloma/análise
3.
Clin Chem Lab Med ; 62(3): 540-550, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37823394

RESUMO

OBJECTIVES: Minimal residual disease status in multiple myeloma is an important prognostic biomarker. Recently, personalized blood-based targeted mass spectrometry (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to measure minimal residual disease. However, quantification of MS-MRD requires a unique calibrator for each patient. The use of patient-specific stable isotope labelled (SIL) peptides is relatively costly and time-consuming, thus hindering clinical implementation. Here, we introduce a simplification of MS-MRD by using an off-the-shelf calibrator. METHODS: SILuMAB-based MS-MRD was performed by spiking a monoclonal stable isotope labeled IgG, SILuMAB-K1, in the patient serum. The abundance of both M-protein-specific peptides and SILuMAB-specific peptides were monitored by mass spectrometry. The relative ratio between M-protein peptides and SILuMAB peptides allowed for M-protein quantification. We assessed linearity, sensitivity and reproducibility of SILuMAB-based MS-MRD in longitudinally collected sera from the IFM-2009 clinical trial. RESULTS: A linear dynamic range was achieved of over 5 log scales, allowing for M-protein quantification down to 0.001 g/L. The inter-assay CV of SILuMAB-based MS-MRD was on average 11 %. Excellent concordance between SIL- and SILuMAB-based MS-MRD was shown (R2>0.985). Additionally, signal intensity of spiked SILuMAB can be used for quality control purpose to assess system performance and incomplete SILuMAB digestion can be used as quality control for sample preparation. CONCLUSIONS: Compared to SIL peptides, SILuMAB-based MS-MRD improves the reproducibility, turn-around-times and cost-efficacy of MS-MRD without diminishing its sensitivity and specificity. Furthermore, SILuMAB can be used as a MS-MRD quality control tool to monitor sample preparation efficacy and assay performance.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Neoplasia Residual , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Peptídeos , Isótopos
4.
Clin Chem ; 67(12): 1689-1698, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34643690

RESUMO

BACKGROUND: Minimal residual disease (MRD) status assessed on bone marrow aspirates is a major prognostic biomarker in multiple myeloma (MM). In this study we evaluated blood-based targeted mass spectrometry (MS-MRD) as a sensitive, minimally invasive alternative to measure MM disease activity. METHODS: Therapy response of 41 MM patients in the IFM-2009 clinical trial (NCT01191060) was assessed with MS-MRD on frozen sera and compared to routine state-of-the-art monoclonal protein (M-protein) diagnostics and next-generation sequencing (NGS-MRD) at 2 time points. RESULTS: In all 41 patients we were able to identify clonotypic M-protein-specific peptides and perform serum-based MS-MRD measurements. MS-MRD is significantly more sensitive to detect M-protein compared to either electrophoretic M-protein diagnostics or serum free light chain analysis. The concordance between NGS-MRD and MS-MRD status in 81 paired bone marrow/sera samples was 79%. The 50% progression-free survival (PFS) was identical (49 months) for patients who were either NGS-positive or MS-positive directly after maintenance treatment. The 50% PFS was 69 and 89 months for NGS-negative and MS-negative patients, respectively. The longest 50% PFS (96 months) was observed in patients who were MRD-negative for both methods. MS-MRD relapse during maintenance treatment was significantly correlated to poor PFS (P < 0.0001). CONCLUSIONS: Our data indicate proof-of-principle that MS-MRD evaluation in blood is a feasible, patient friendly alternative to NGS-MRD assessed on bone marrow. Clinical validation of the prognostic value of MS-MRD and its complementary value in MRD-evaluation of patients with MM is warranted in an independent larger cohort.


Assuntos
Mieloma Múltiplo , Medula Óssea/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Espectrometria de Massas , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Neoplasia Residual/diagnóstico
5.
Clin Chem ; 67(6): 867-875, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33709101

RESUMO

BACKGROUND: Due to improved treatment, more patients with multiple myeloma (MM) reach a state of minimal residual disease (MRD). Different strategies for MM MRD monitoring include flow cytometry, allele-specific oligonucleotide-quantitative PCR, next-generation sequencing, and mass spectrometry (MS). The last 3 methods rely on the presence and the stability of a unique immunoglobulin fingerprint derived from the clonal plasma cell population. For MS-MRD monitoring it is imperative that MS-compatible clonotypic M-protein peptides are identified. To support implementation of molecular MRD techniques, we studied the presence and stability of these clonotypic features in the CoMMpass database. METHODS: An analysis pipeline based on MiXCR and HIGH-VQUEST was constructed to identify clonal molecular fingerprints and their clonotypic peptides based on transcriptomic datasets. To determine the stability of the clonal fingerprints, we compared the clonal fingerprints during disease progression for each patient. RESULTS: The analysis pipeline to establish the clonal fingerprint and MS-suitable clonotypic peptides was successfully validated in MM cell lines. In a cohort of 609 patients with MM, we demonstrated that the most abundant clone harbored a unique clonal molecular fingerprint and that multiple unique clonotypic peptides compatible with MS measurements could be identified for all patients. Furthermore, the clonal immunoglobulin gene fingerprints of both the light and heavy chain remained stable during MM disease progression. CONCLUSIONS: Our data support the use of the clonal immunoglobulin gene fingerprints in patients with MM as a suitable MRD target for MS-MRD analyses.


Assuntos
Genes de Imunoglobulinas/fisiologia , Mieloma Múltiplo , Peptídeos/química , Biomarcadores , Progressão da Doença , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Neoplasia Residual/genética , Peptídeos/genética
6.
J Tissue Eng Regen Med ; 14(8): 1077-1086, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32548924

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative disorder of movement worldwide. To date, only symptomatic treatments are available. Implantation of collagen-encapsulated human umbilical cord mesenchymal stem cells (hUC-MSCs) is being developed as a novel therapeutic approach to potentially modify PD progression. However, implanted collagen scaffolds may induce a host tissue response. To gain insight into such response, hUC-MSCs were encapsulated into collagen hydrogels and implanted into the striatum of hemi-Parkinsonian male Sprague-Dawley rats. One or 14 days after implantation, the area of interest was dissected using a cryostat. Total protein extracts were subjected to tryptic digestion and subsequent LC-MS/MS analyses for protein expression profiling. Univariate and multivariate analyses were performed to identify differentially expressed protein profiles with subsequent gene ontology and pathway analysis for biological interpretation of the data; 2,219 proteins were identified by MaxQuant at 1% false discovery rate. A high correlation of label-free quantification (LFQ) protein values between biological replicates (r = .95) was observed. No significant differences were observed between brains treated with encapsulated hUC-MSCs compared to appropriate controls. Proteomic data were highly robust and reproducible, indicating the suitability of this approach to map differential protein expression caused by the implants. The lack of differences between conditions suggests that the effects of implantation may be minimal. Alternatively, effects may only have been focal and/or could have been masked by nonrelevant high-abundant proteins. For follow-up assessment of local changes, a more accurate dissection technique, such as laser micro dissection, and analysis method are recommended.


Assuntos
Células Imobilizadas , Colágeno/química , Corpo Estriado , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença de Parkinson , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Proteômica , Ratos , Ratos Sprague-Dawley
7.
PLoS One ; 10(2): e0116726, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695250

RESUMO

Mitochondrial DNA/protein complexes (nucleoids) appear as discrete entities inside the mitochondrial network when observed by live-cell imaging and immunofluorescence. This somewhat trivial observation in recent years has spurred research towards isolation of these complexes and the identification of nucleoid-associated proteins. Here we show that whole cell formaldehyde crosslinking combined with affinity purification and tandem mass-spectrometry provides a simple and reproducible method to identify potential nucleoid associated proteins. The method avoids spurious mitochondrial isolation and subsequent multifarious nucleoid enrichment protocols and can be implemented to allow for label-free quantification (LFQ) by mass-spectrometry. Using expression of a Flag-tagged Twinkle helicase and appropriate controls we show that this method identifies many previously identified nucleoid associated proteins. Using LFQ to compare HEK293 cells with and without mtDNA, but both expressing Twinkle-FLAG, identifies many proteins that are reduced or absent in the absence of mtDNA. This set not only includes established mtDNA maintenance proteins but also many proteins involved in mitochondrial RNA metabolism and translation and therefore represents what can be considered an mtDNA gene expression proteome. Our data provides a very valuable resource for both basic mitochondrial researchers as well as clinical geneticists working to identify novel disease genes on the basis of exome sequence data.


Assuntos
Formaldeído/química , Mitocôndrias/química , DNA Mitocondrial/isolamento & purificação , Genes Mitocondriais , Células HEK293 , Humanos , Proteínas Mitocondriais/isolamento & purificação
8.
Antioxid Redox Signal ; 18(2): 129-38, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22746225

RESUMO

AIMS: The BolA protein family is widespread among eukaryotes and bacteria. In Escherichia coli, BolA causes a spherical cell shape and is overexpressed during oxidative stress. Here we aim to elucidate the possible role of its human homolog BOLA1 in mitochondrial morphology and thiol redox potential regulation. RESULTS: We show that BOLA1 is a mitochondrial protein that counterbalances the effect of L-buthionine-(S,R)-sulfoximine (BSO)-induced glutathione (GSH) depletion on the mitochondrial thiol redox potential. Furthermore, overexpression of BOLA1 nullifies the effect of BSO and S-nitrosocysteine on mitochondrial morphology. Conversely, knockdown of the BOLA1 gene increases the oxidation of mitochondrial thiol groups. Supporting a role of BOLA1 in controlling the mitochondrial thiol redox potential is that BOLA1 orthologs only occur in aerobic eukaryotes. A measured interaction of BOLA1 with the mitochondrial monothiol glutaredoxin GLRX5 provides hints for potential mechanisms behind BOLA1's effect on mitochondrial redox potential. Nevertheless, we have no direct evidence for a role of GLRX5 in BOLA1's function. INNOVATION: We implicate a new protein, BOLA1, in the regulation of the mitochondrial thiol redox potential. CONCLUSION: BOLA1 is an aerobic, mitochondrial protein that prevents mitochondrial morphology aberrations induced by GSH depletion and reduces the associated oxidative shift of the mitochondrial thiol redox potential.


Assuntos
Glutationa/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Butionina Sulfoximina/farmacologia , Humanos , Oxirredução
9.
Nucleic Acids Res ; 40(9): 4040-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238375

RESUMO

In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30.


Assuntos
Proteínas Mitocondriais/fisiologia , Biossíntese de Proteínas , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Genes Bacterianos , Células HEK293 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Óperon , Filogenia , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
10.
Infect Immun ; 79(12): 4777-83, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947776

RESUMO

Proteolytic treatment of intact bacterial cells has proven to be a convenient approach for the identification of surface-exposed proteins. This class of proteins directly interacts with the outside world, for instance, during adherence to human epithelial cells. Here, we aimed to identify host receptor proteins by introducing a preincubation step in which bacterial cells were first allowed to capture human proteins from epithelial cell lysates. Using Streptococcus gallolyticus as a model bacterium, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteolytically released peptides yielded the identification of a selective number of human epithelial proteins that were retained by the bacterial surface. Of these potential receptors for bacterial interference, (cyto)keratin-8 (CK8) was verified as the most significant hit, and its surface localization was investigated by subcellular fractionation and confocal microscopy. Interestingly, bacterial enolase could be assigned as an interaction partner of CK8 by MS/MS analysis of cross-linked protein complexes and complementary immunoblotting experiments. As surface-exposed enolase has a proposed role in epithelial adherence of several Gram-positive pathogens, its interaction with CK8 seems to point toward a more general virulence mechanism. In conclusion, our study shows that surface-affinity profiling is a valuable tool to identify novel adhesin-receptor pairs, which advocates its application in other hybrid biological systems.


Assuntos
Aderência Bacteriana/fisiologia , Células Epiteliais/metabolismo , Streptococcus/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Queratina-8/genética , Queratina-8/metabolismo , Ligação Proteica , Streptococcus/citologia , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 7(6): 2490-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18419150

RESUMO

Autosomal dominant polycystic liver disease (PCLD) is characterized by multiple liver cysts and is caused by mutations in PRKCSH (hepatocystin). Mechanisms of cystogenesis are unknown, but previous studies have shown that hepatocystin is secreted in vitro. The goal of this study was to determine the fate of hepatocystin in vivo. Using immunoprecipitation, we determined that mutant hepatocystin is secreted from both apical and basolateral cell surface of MDCK cells stably transfected with mutant hepatocystin. Analysis of 60 cyst fluid samples from polycystic livers using Western blot, MALDI-TOF MS or nLC-MS/MS did not detect hepatocystin in liver cyst fluid. We did identify 163 ubiquitous serum proteins. No paracrine or autocrine factors were recognized. Although cyst fluids vary greatly in protein concentration, a PCLD specific protein pattern was not established. In conclusion, hepatocystin is not secreted in PCLD liver cyst fluid, suggesting that mutant hepatocystin is either not produced or degraded intracellularly. PCLD cysts develop from intralobular bile ductules and cyst fluid mainly contains common serum proteins comparable to that of other polycystic diseases.


Assuntos
Líquido Cístico/metabolismo , Cistos/metabolismo , Glucosidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatias/metabolismo , Mutação , Animais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular , Líquido Cístico/química , Cistos/genética , Cães , Eletroforese em Gel de Poliacrilamida , Feminino , Glucosidases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hepatopatias/genética , Masculino , Albumina Sérica/análise , Albumina Sérica/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Transfecção
12.
J Biol Chem ; 277(51): 49319-25, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12368296

RESUMO

Clinical observations in patients with peroxisomal disorders and studies employing corresponding mouse models have shown that supraphysiological concentrations of dietary branched chain fatty acids (BCFAs) are associated with a high level of toxicity, which is poorly understood at present. Here we show that phytanic and pristanic acid, two BCFAs that are metabolized in peroxisomes, promote apoptosis in cultured vascular smooth muscle cells of human, rat, and porcine origin. Under the conditions used, the apoptosis-promoting effect of BCFAs was neither shared by saturated or unsaturated straight chain fatty acids nor by artificial peroxisome proliferators, which, like phytanic and pristanic acid, have been shown to activate the peroxisome proliferator-activated receptor alpha (PPARalpha). We could demonstrate, however, that BCFA induced tumor necrosis factor alpha (TNFalpha) activation and secretion, which is an obligatory step required for induction of apoptosis by BCFAs. Furthermore, incubation of VSMCs with BCFA increased inducible nitric-oxide synthase (iNOS) mRNA and protein concentrations markedly within 2 h of treatment. Correspondingly, apoptosis was significantly reduced when the cells were co-treated with the competitive NOS inhibitors monomethyl-L-arginine monoacetate and aminoguanidine. Moreover, co-incubation with TGFbeta1, previously shown to destabilize iNOS mRNA, also abolished apoptosis. These results establish a new signaling cascade in which natural BCFA induced NO-dependent apoptosis, which is apparently triggered by autocrine secretion of TNFalpha in cultured VSMCs.


Assuntos
Endotélio Vascular/citologia , Ácidos Graxos/metabolismo , Músculo Liso/citologia , Óxido Nítrico/metabolismo , Ácido Fitânico/farmacologia , Animais , Apoptose , Western Blotting , Células Cultivadas , Endotélio Vascular/patologia , Ativação Enzimática , Humanos , Camundongos , Músculo Liso/patologia , Ácido Fitânico/metabolismo , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA