Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EBioMedicine ; 104: 105156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768529

RESUMO

BACKGROUND: Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS: Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS: Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION: Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING: This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).


Assuntos
Proteínas de Ligação a DNA , Dieta Cetogênica , Face , Doenças Hematológicas , Proteômica , Proteínas Ribossômicas , Doenças Vestibulares , Doenças Vestibulares/genética , Doenças Vestibulares/metabolismo , Doenças Vestibulares/dietoterapia , Humanos , Face/anormalidades , Masculino , Doenças Hematológicas/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/etiologia , Doenças Hematológicas/dietoterapia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Criança , Proteômica/métodos , Feminino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regulação da Expressão Gênica , Mutação , Transcriptoma , Anormalidades Múltiplas
2.
Sci Transl Med ; 16(741): eadj0133, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569018

RESUMO

Transforming growth factor-ß (TGFß) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFß signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFß-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFß expression and drove TGFß signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFß signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.


Assuntos
Fígado , Proteínas Tirosina Quinases , Animais , Humanos , Camundongos , c-Mer Tirosina Quinase/metabolismo , Modelos Animais de Doenças , Fibrose , Fígado/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
J Infect Dis ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655824

RESUMO

BACKGROUND: Hepatitis C virus (HCV) and hepatitis B virus (HBV) cause chronic hepatitis with important clinical differences. HCV causes hepatic steatosis and insulin resistance, while HBV confers increased risk of liver cancer. We hypothesised these differences may be due to virus-specific effects on mitochondrial function. METHODS: Seahorse technology was utilised to investigate effects of virus infection on mitochondrial function. Cell based assays were used to measure mitochondrial membrane potential and quantify pyruvate and lactate. Mass spectrometry was performed on mitochondria isolated from HBV expressing, HCV infected and control cells cultured with isotope-labelled amino acids, to identify proteins with different abundance. Altered expression of key mitochondrial proteins was confirmed by real time PCR and western blot. RESULTS: Reduced mitochondrial function and ATP production were observed with HCV infection and HBV expression. HCV impairs glycolysis and reduces expression of genes regulating fatty acid oxidation, promoting lipid accumulation. HBV causes lactate accumulation by increasing expression of lactate dehydrogenase A, which converts pyruvate to lactate. In HBV expressing cells there was marked enrichment of pyruvate dehydrogenase kinase, inhibiting conversion of pyruvate to acetyl-CoA and thereby reducing its availability for mitochondrial oxidative phosphorylation. CONCLUSIONS: HCV and HBV impair mitochondrial function and reduce ATP production. HCV reduces acetyl-CoA availability for energy production by impairing fatty acid oxidation, causing lipid accumulation and hepatic steatosis. HBV has no effect on fatty oxidation but reduces acetyl-CoA availability by disrupting pyruvate metabolism. This promotes lactic acidosis and oxidative stress, increasing the risk of disease progression and liver cancer.

4.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516885

RESUMO

CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.


Assuntos
Linfócitos T Reguladores , Tolerância ao Transplante , Animais , Camundongos , Fatores de Transcrição Forkhead , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica , Linfócitos T CD4-Positivos , Subunidade alfa de Receptor de Interleucina-7
6.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648284

RESUMO

Polo-like kinase 1 (PLK1) is a regulator of cell mitosis and cytoskeletal dynamics. PLK1 overexpression in liver cancer is associated with tumour progression, metastasis, and vascular invasion. Hepatitis C virus (HCV) NS5A protein stimulates PLK1-mediated phosphorylation of host proteins, so we hypothesised that HCV-PLK1 interactions might be a mechanism for HCV-induced liver cancer. We used a HCV cell-culture model (Jc1) to investigate the effects of virus infection on the cytoskeleton. In HCV-infected cells, a novel posttranslational modification in ß-actin was observed with phosphorylation at Ser239. Using in silico and in vitro approaches, we identified PLK1 as the mediating kinase. In functional experiments with a phosphomimetic mutant form of ß-actin, Ser239 phosphorylation influences ß-actin polymerization and distribution, resulting in increased cell motility. The changes were prevented by treating cells with the PLK1 inhibitor volasertib. In HCV-infected hepatocytes, increased cell motility contributes to cancer cell migration, invasion, and metastasis. PLK1 is an important mediator of these effects and early treatment with PLK1 inhibitors may prevent or reduce HCC progression, particularly in people with HCV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus , Actinas , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Movimento Celular/genética , Quinase 1 Polo-Like
7.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240132

RESUMO

The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.


Assuntos
Fígado Gorduroso , Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Transferases/metabolismo , Hepatite C/genética , Fígado Gorduroso/patologia , Replicação Viral , Genótipo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Fenótipo , Fosfatidiletanolamina N-Metiltransferase/genética
8.
Am J Hematol ; 98(1): 159-165, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35560045

RESUMO

We designed a trial to simultaneously address the problems of graft versus host disease (GVHD), infection, and recurrence of malignancy after allogeneic stem cell transplantation. CD34+ stem cell isolation was used to minimize the development of acute and chronic GVHD. Two prophylactic infusions, one combining donor-derived cytomegalovirus, Epstein-Barr virus, and Aspergillus fumigatus specific T-cells and the other comprising donor-derived CD19 directed chimeric antigen receptor (CAR) bearing T-cells, were given 21-28 days after transplant. Two patients were transplanted for acute lymphoblastic leukemia from HLA identical siblings using standard doses of cyclophosphamide and total body irradiation without antilymphocyte globulin. Patients received no post-transplant immune suppression and were given no pre-CAR T-cell lymphodepletion. Neutrophil and platelet engraftment was prompt. Following adoptive T-cell infusions, there was rapid appearance of antigen-experienced CD8+ and to a lesser extent CD4+ T-cells. Tetramer-positive T-cells targeting CMV and EBV appeared rapidly after T-cell infusion and persisted for at least 1 year. CAR T-cell expansion occurred and persisted for up to 3 months. T-cell receptor tracking confirmed the presence of product-derived T-cell clones in blood targeting all three pathogens. Both patients are alive over 3 years post-transplant without evidence of GVHD or disease recurrence. Combining robust donor T-cell depletion with directed T-cell adoptive immunotherapy targeting infectious and malignant antigens permits independent modulation of GVHD, infection, and disease recurrence. The combination may separate GVHD from the graft versus tumor effect, accelerate immune reconstitution, and improve transplant tolerability.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linfócitos T , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Transplante Homólogo , Resultado do Tratamento , Herpesvirus Humano 4 , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco , Imunoterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
9.
Blood ; 138(16): 1391-1405, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974080

RESUMO

We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma. Screening of other patients led to the detection, in an asymptomatic patient, of a second CAR T-cell tumor in thoracic para-aortic lymph nodes. Analysis of the first lymphoma showed a high transgene copy number, but no insertion into typical oncogenes. There were also structural changes such as altered genomic copy number and point mutations unrelated to the insertion sites. Transcriptome analysis showed transgene promoter-driven upregulation of transcription of surrounding regions despite insulator sequences surrounding the transgene. However, marked global changes in transcription predominantly correlated with gene copy number rather than insertion sites. In both patients, the CAR T-cell-derived lymphoma progressed and 1 patient died. We describe the first 2 cases of malignant lymphoma derived from CAR gene-modified T cells. Although CAR T cells have an enviable record of safety to date, our results emphasize the need for caution and regular follow-up of CAR T recipients, especially when novel methods of gene transfer are used to create genetically modified immune therapies. This trial was registered at www.anzctr.org.au as ACTRN12617001579381.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Linfoma/etiologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Idoso , Elementos de DNA Transponíveis , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Imunoterapia Adotiva/métodos , Leucemia de Células B/genética , Leucemia de Células B/terapia , Linfoma/genética , Linfoma de Células B/genética , Linfoma de Células B/terapia , Masculino , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo , Transcriptoma , Transgenes
11.
Cell Syst ; 12(5): 432-445.e7, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33957084

RESUMO

Findings about chronic complex diseases are difficult to extrapolate from animal models to humans. We reason that organs may have core network modules that are preserved between species and are predictably altered when homeostasis is disrupted. To test this idea, we perturbed hepatic homeostasis in mice by dietary challenge and compared the liver transcriptome with that in human fatty liver disease and liver cancer. Co-expression module preservation analysis pointed to alterations in immune responses and metabolism (core modules) in both human and mouse datasets. The extent of derailment in core modules was predictive of survival in the cancer genome atlas (TCGA) liver cancer dataset. We identified module eigengene quantitative trait loci (module-eQTL) for these predictive co-expression modules, targeting of which may resolve homeostatic perturbations and improve patient outcomes. The framework presented can be used to understand homeostasis at systems levels in pre-clinical models and in humans. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Redes Reguladoras de Genes , Neoplasias Hepáticas , Animais , Redes Reguladoras de Genes/genética , Homeostase , Neoplasias Hepáticas/genética , Camundongos , Locos de Características Quantitativas/genética
12.
Cell Mol Gastroenterol Hepatol ; 7(4): 819-839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30831321

RESUMO

BACKGROUND & AIMS: The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS: We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS: Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of ß-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS: Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Deleção de Genes , Genes MCC , Inflamação/genética , Animais , Caderinas/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/patologia , Reparo do DNA/genética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , GTP Fosfo-Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Interferon gama/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , beta Catenina/metabolismo
13.
Am J Hum Genet ; 101(2): 255-266, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777932

RESUMO

Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 11/genética , Ciclina D1/genética , Reparo do DNA/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Elementos Facilitadores Genéticos/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Células MCF-7 , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética
14.
Oncotarget ; 6(42): 44551-62, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26575166

RESUMO

Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Neoplasias Císticas, Mucinosas e Serosas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/prevenção & controle , Células Estromais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Gradação de Tumores , Invasividade Neoplásica , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/secundário , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Transdução de Sinais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Regulação para Cima
15.
Cell Div ; 10: 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741376

RESUMO

BACKGROUND: The cyclin E oncogene activates CDK2 to drive cells from G1 to S phase of the cell cycle to commence DNA replication. It coordinates essential cellular functions with the cell cycle including histone biogenesis, splicing, centrosome duplication and origin firing for DNA replication. The two E-cyclins, E1 and E2, are assumed to act interchangeably in these functions. However recent reports have identified unique functions for cyclins E1 and E2 in different tissues, and particularly in breast cancer. FINDINGS: Cyclins E1 and E2 localise to distinct foci in breast cancer cells as well as co-localising within the cell. Both E-cyclins are found in complex with CDK2, at centrosomes and with the splicing machinery in nuclear speckles. However cyclin E2 uniquely co-localises with NPAT, the main activator of cell-cycle regulated histone transcription. Increased cyclin E2, but not cyclin E1, expression is associated with high expression of replication-dependent histones in breast cancers. CONCLUSIONS: The preferential localisation of cyclin E1 or cyclin E2 to distinct foci indicates that each E-cyclin has unique roles. Cyclin E2 uniquely interacts with NPAT in breast cancer cells, and is associated with higher levels of histones in breast cancer. This could explain the unique correlations of high cyclin E2 expression with poor outcome and genomic instability in breast cancer.

16.
Cancer Lett ; 342(2): 257-63, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22245949

RESUMO

Ovarian cancer is the most lethal gynecological malignancy and the 5th leading cause of cancer death in women. Women with ovarian cancer are typically diagnosed at late stage, when the cancer has spread into the peritoneal cavity and complete surgical removal is difficult. The 5-year survival time for patients diagnosed at this stage is 30%, in contrast to a 5-year survival of 90% for patients diagnosed at early stage. Cancer screening and early detection have the potential to greatly decrease the mortality and morbidity from cancer. The emerging field of epigenetics offers a valuable opportunity to identify cancer-specific DNA methylation changes that can be used in the clinic to improve early-stage diagnosis and better predict response in treated patients. To date, numerous DNA methylation aberrations have been identified in epithelial ovarian cancer; here we review some candidate genes and pathways with potential clinical utility as biomarkers for diagnosis and/or prognosis. It has become clear that even with the great promise of DNA methylation biomarkers in epithelial ovarian cancer, the identification of highly specific, sensitive and robust panels of markers and the standardization of analysis techniques are still required in order to improve detection, treatment and thus patient outcome.


Assuntos
Biomarcadores Tumorais/genética , Epigênese Genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Animais , Carcinoma Epitelial do Ovário , Metilação de DNA , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Testes Genéticos , Humanos , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/terapia , Fenótipo , Valor Preditivo dos Testes , Prognóstico
17.
Gynecol Oncol ; 124(3): 582-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22115852

RESUMO

OBJECTIVE: Altered DNA methylation patterns hold promise as cancer biomarkers. In this study we selected a panel of genes which are commonly methylated in a variety of cancers to evaluate their potential application as biomarkers for prognosis and diagnosis in high grade serous ovarian carcinoma (HGSOC); the most common and lethal subtype of ovarian cancer. METHODS: The methylation patterns of 10 genes (BRCA1, EN1, DLEC1, HOXA9, RASSF1A, GATA4, GATA5, HSULF1, CDH1, SFN) were examined and compared in a cohort of 80 primary HGSOC and 12 benign ovarian surface epithelium (OSE) samples using methylation-specific headloop suppression PCR. RESULTS: The genes were variably methylated in primary HGSOC, with HOXA9 methylation observed in 95% of cases. Most genes were rarely methylated in benign OSE, with the exception of SFN which was methylated in all HGSOC and benign OSE samples examined. Methylation of DLEC1 was associated with disease recurrence, independent of tumor stage and suboptimal surgical debulking (HR 3.5 (95% CI:1.10-11.07), p=0.033). A combination of the methylation status of HOXA9 and EN1 could discriminate HGSOC from benign OSE with a sensitivity of 98.8% and a specificity of 91.7%, which increased to 100% sensitivity with no loss of specificity when pre-operative CA125 levels were also incorporated. CONCLUSIONS: This study provides further evidence to support the feasibility of detecting altered DNA methylation patterns as a potential diagnostic and prognostic approach for HGSOC.


Assuntos
Cistadenocarcinoma Seroso/genética , Metilação de DNA , Neoplasias Ovarianas/genética , Estudos de Coortes , Cistadenocarcinoma Seroso/patologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase/métodos , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética
18.
Cancer Lett ; 318(1): 76-85, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155104

RESUMO

To identify epigenetic-based biomarkers for diagnosis of ovarian cancer we performed MeDIP-Chip in A2780 and CaOV3 ovarian cancer cell lines. Validation by Sequenom massARRAY methylation analysis confirmed a panel of six gene promoters (ARMCX1, ICAM4, LOC134466, PEG3, PYCARD & SGNE1) where hypermethylation discriminated 27 serous ovarian cancer clinical samples versus 12 normal ovarian surface epithelial cells (OSE) (ROC of 0.98). Notably, CpG sites across the transcription start site of a potential long-intergenic non-coding RNA (lincRNA) gene (LOC134466), was shown to be hypermethylated in 81% of serous EOC and could differentiate tumours from OSE (p<0.05). We propose that this potential biomarker panel holds great promise as a diagnostic test for high-grade (Type II) serous ovarian cancer.


Assuntos
Biomarcadores/análise , Metilação de DNA , Epigenômica , Perfilação da Expressão Gênica , Genoma Humano , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Ilhas de CpG/genética , Cistadenocarcinoma Seroso/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/metabolismo , Ovário/patologia , Células Tumorais Cultivadas
19.
BMC Cancer ; 10: 497, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20846453

RESUMO

BACKGROUND: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. METHODS: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. RESULTS: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). CONCLUSIONS: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.


Assuntos
Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias do Endométrio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Proteolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Pessoa de Meia-Idade , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Estadiamento de Neoplasias , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Neoplasias Ovarianas/patologia , Prognóstico , Taxa de Sobrevida , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA