Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nicotine Tob Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654694

RESUMO

INTRODUCTION: This study aimed to assess the role of the rs16969968 variant of nicotinic receptor alpha-5 subunit in regulating smoking behavior and nicotine intake in response to nicotine manipulations among dependent smokers in a naturalistic environment. METHODS: Sixty-nine adults (19 females) smoking 10 or more cigarettes per day were asked to complete four 2-week study phases during which they smoked exclusively one of two types of Spectrum nicotine research cigarettes (FTC nicotine yield 0.8 and 1.6 mg, respectively), their usual brand of cigarettes, or their usual brand of cigarettes while wearing a 21-mg nicotine patch. Measurements included rs16969968 genotype, number of cigarettes per day, smoking topography, and plasma cotinine. RESULTS: Compared to controls (G/G carriers), A allele carriers reported smoking 4 to 5 more cigarettes per day across all conditions (all ps < .05). Mean total smoke volume per day and cotinine were greater in A allele carriers than in controls (ps = 0.05, 0.046, respectively). No significant genotype differences were found in smoking compensation indices for the switch from Medium to High nicotine yield cigarettes. Nicotine patch-induced reductions in cigarettes smoked per day and total smoke volume per day showed significant interactions between genotype and pre-patch levels, heavier smokers showing greater effects of genotype (p = .052 and p =.006, respectively). CONCLUSIONS: Results suggest that the rs16969968 variants regulate heaviness of smoking primarily by their impact on daily numbers of cigarettes smoked, but no genotype differences were found in smoking compensation after switching from Medium to High nicotine cigarettes. IMPLICATIONS: The differences in daily cigarette consumption between rs16969968 risk-allele carriers and controls are shown to be consistent regardless of manipulations of cigarette nicotine content and transdermal nicotine supplementation and markedly greater among dependent smokers than those observed in the general smoker populations. G/G allele carriers, relative to A allele carriers, appeared to be more sensitive to the nicotine patch manipulation, reducing their smoking to a greater extent. These findings support continued efforts in the development of personalized intervention strategies to reduce the rs16969968-conveyed genetic propensity for heavy smoking.

2.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200715

RESUMO

Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.

3.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33811421

RESUMO

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Valvas Cardíacas/embriologia , Prolapso da Valva Mitral/metabolismo , Organogênese/fisiologia , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Valvas Cardíacas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Prolapso da Valva Mitral/genética , Fenótipo , Transdução de Sinais/fisiologia
4.
Dev Biol ; 463(1): 26-38, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151560

RESUMO

Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Valva Mitral/embriologia , Actinas/metabolismo , Animais , Matriz Extracelular/metabolismo , Doenças das Valvas Cardíacas , Proteínas Hedgehog/fisiologia , Camundongos , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/metabolismo , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Neuropeptídeos/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Sci Transl Med ; 11(493)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118289

RESUMO

Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases. Our expression studies and genetic ablation experiments confirmed a role for primary cilia in regulating ECM deposition during cardiac development. Loss of primary cilia during development resulted in progressive myxomatous degeneration and profound mitral valve pathology in the adult setting. Analysis of a large family with inherited, autosomal dominant nonsyndromic MVP identified a deleterious missense mutation in a cilia gene, DZIP1 A mouse model harboring this variant confirmed the pathogenicity of this mutation and revealed impaired ciliogenesis during development, which progressed to adult myxomatous valve disease and functional MVP. Relevance of primary cilia in common forms of MVP was tested using pathway enrichment in a large population of patients with MVP and controls from previously generated genome-wide association studies (GWAS), which confirmed the involvement of primary cilia genes in MVP. Together, our studies establish a developmental basis for MVP through altered cilia-dependent regulation of ECM and suggest that defects in primary cilia genes can be causative to disease phenotype in some patients with MVP.


Assuntos
Cílios/patologia , Prolapso da Valva Mitral/etiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Matriz Extracelular/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Valvas Cardíacas/diagnóstico por imagem , Valvas Cardíacas/crescimento & desenvolvimento , Humanos , Masculino , Camundongos Knockout , Prolapso da Valva Mitral/diagnóstico por imagem , Prolapso da Valva Mitral/genética , Morfogênese , Linhagem , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo
6.
Anat Rec (Hoboken) ; 302(1): 117-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288957

RESUMO

Mitral valve prolapse (MVP) affects 2.4% of the population and has poorly understood etiology. Recent genetic studies have begun to unravel the complexities of MVP and through these efforts, mutations in the FLNA (Filamin-A) gene were identified as disease causing. Our in vivo and in vitro studies have validated these genetic findings and have revealed FLNA as a central regulator of valve morphogenesis. The mechanisms by which FLNA mutations result in myxomatous mitral valve disease are currently unknown, but may involve proteins previously associated with mutated regions of the FLNA protein, such as the small GTPase signaling protein, R-Ras. Herein, we report that Filamin-A is required for R-Ras expression and activation of the Ras-Mek-Erk pathway. Loss of the Ras/Erk pathway correlated with hyperactivation of pSmad2/3, increased extracellular matrix (ECM) production and enlarged mitral valves. Analyses of integrin receptors in the mitral valve revealed that Filamin-A was required for ß1-integrin expression and provided a potential mechanism for impaired ECM compaction and valve enlargement. Our data support Filamin-A as a protein that regulates the balance between Erk and Smad activation and an inability of Filamin-A deficient valve interstitial cells to effectively remodel the increased ECM production through a ß1-integrin mechanism. As a consequence, loss of Filamin-A function results in increased ECM production and generation of a myxomatous phenotype characterized by improperly compacted mitral valve tissue. Anat Rec, 302:117-124, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Matriz Extracelular/metabolismo , Filaminas/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Valva Mitral/metabolismo , Organogênese , Proteína Smad3/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Valva Mitral/citologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA