Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(3): 200833, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39184876

RESUMO

Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.

2.
Cells ; 11(12)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741039

RESUMO

Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.


Assuntos
Neoplasias Hematológicas , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA