Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 5188, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664327

RESUMO

Inflammatory bowel disease is a group of conditions with rising incidence caused by genetic and environmental factors including diet. The chelator ethylenediaminetetraacetate (EDTA) is widely used by the food and pharmaceutical industry among numerous other applications, leading to a considerable environmental exposure. Numerous safety studies in healthy animals have revealed no relevant toxicity by EDTA. Here we show that, in the presence of intestinal inflammation, EDTA is surprisingly capable of massively exacerbating inflammation and even inducing colorectal carcinogenesis at doses that are presumed to be safe. This toxicity is evident in two biologically different mouse models of inflammatory bowel disease, the AOM/DSS and the IL10-/- model. The mechanism of this effect may be attributed to disruption of intercellular contacts as demonstrated by in vivo confocal endomicroscopy, electron microscopy and cell culture studies. Our findings add EDTA to the list of food additives that might be detrimental in the presence of intestinal inflammation, but the toxicity of which may have been missed by regulatory safety testing procedures that utilize only healthy models. We conclude that the current use of EDTA especially in food and pharmaceuticals should be reconsidered. Moreover, we suggest that intestinal inflammatory models should be implemented in the testing of food additives to account for the exposure of this primary organ to environmental and dietary stress.


Assuntos
Carcinogênese/genética , Colite/patologia , Neoplasias do Colo/patologia , Ácido Edético/efeitos adversos , Animais , Carcinogênese/efeitos dos fármacos , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Modelos Animais de Doenças , Aditivos Alimentares/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout
2.
Cell Mol Gastroenterol Hepatol ; 11(3): 892-907.e1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33189893

RESUMO

BACKGROUND & AIMS: p21-activated kinase-1 (PAK1) belongs to a family of serine-threonine kinases and contributes to cellular pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Wingless-related integration site(Wnt)/ß-catenin, all of which are involved in intestinal homeostasis. Overexpression of PAK1 is linked to inflammatory bowel disease as well as colitis-associated cancer (CAC), and similarly was observed in interleukin (IL)10 knockout (KO) mice, a model of colitis and CAC. Here, we tested the effects of PAK1 deletion on intestinal inflammation and carcinogenesis in IL10 KO mice. METHODS: IL10/PAK1 double-knockout (DKO) mice were generated and development of colitis and CAC was analyzed. Large intestines were measured and prepared for histology or RNA isolation. Swiss rolls were stained with H&E and periodic acid-Schiff. Co-immunoprecipitation and immunofluorescence were performed using intestinal organoids, SW480, and normal human colon epithelial cells 1CT. RESULTS: When compared with IL10 KO mice, DKOs showed longer colons and prolonged crypts, despite having higher inflammation and numbers of dysplasia. Crypt hyperproliferation was associated with Notch1 activation and diminished crypt differentiation, indicated by a reduction of goblet cells. Gene expression analysis indicated up-regulation of the Notch1 target hairy and enhancer of split-1 and the stem cell receptor leucin-rich repeat-containing G-protein-coupled receptor 5 in DKO mice. Interestingly, the stem cell marker olfactomedin-4 was present in colonic tissue. Increased ß-catenin messenger RNA and cytoplasmic accumulation indicated aberrant Wnt signaling. Co-localization and direct interaction of Notch1 and PAK1 was found in colon epithelial cells. Notch1 activation abrogated this effect whereas silencing of PAK1 led to Notch1 activation. CONCLUSIONS: PAK1 contributes to the regulation of crypt homeostasis under inflammatory conditions by controlling Notch1. This identifies a novel PAK1-Notch1 axis in intestinal pathophysiology of inflammatory bowel disease and CAC.


Assuntos
Neoplasias Associadas a Colite/imunologia , Colite/imunologia , Receptor Notch1/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/complicações , Colite/patologia , Neoplasias Associadas a Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Inativação Gênica , Humanos , Interleucina-10/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Organoides , Piroxicam/administração & dosagem , Piroxicam/toxicidade , Cultura Primária de Células , Regulação para Cima , Via de Sinalização Wnt/imunologia , Quinases Ativadas por p21/genética
3.
Sci Rep ; 9(1): 2842, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809073

RESUMO

Disruption of mucosal structure and barrier function contribute to the pathogenesis of inflammatory bowel disease (IBD). Efficacy of therapy in IBD is based on endoscopic mucosal healing, which occurs by a dynamic interplay of epithelial cell regeneration, migration and differentiation. Both mesalamine (5-ASA) and azathioprine (AZTP) promote this process through mechanisms not clearly understood. We examined molecular pathways implicated in epithelial barrier function that were altered by 5-ASA and AZTP. Paracellular permeability induced by inflammatory mediators was mitigated by both compounds through restoration of cellular anchoring complexes. 5-ASA and AZTP induced rearrangement and membranous localization of junctional proteins and modulated genes involved in tight junctions. Intestinal organoids from wildtype-mice treated with TNF-α and IL-10- deficient-mice displayed impaired epithelial barrier with loss of membranous E-cadherin and reduced Desmoglein-2 expression. These effects were counteracted by 5-ASA and AZTP. Unlike AZTP that exhibited antiproliferative effects, 5-ASA promoted wound healing in colon epithelial cells. Both affected cellular senescence, cell cycle distribution and restricted cells in G1 or S phase without inducing apoptosis. This study provides mechanistic evidence that molecular actions of 5-ASA and AZTP on intestinal epithelia are fundamental in the resolution of barrier dysfunction.


Assuntos
Azatioprina/farmacologia , Células Epiteliais/efeitos dos fármacos , Inflamação , Doenças Inflamatórias Intestinais/fisiopatologia , Intestinos/efeitos dos fármacos , Mesalamina/farmacologia , Animais , Anti-Inflamatórios não Esteroides , Azatioprina/uso terapêutico , Colite , Células Epiteliais/fisiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos/fisiopatologia , Mesalamina/uso terapêutico , Camundongos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA