Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 98, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386110

RESUMO

In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.


Assuntos
Neoplasias , Progesterona , Progesterona/farmacologia , Receptores de Progesterona/genética , Receptor alfa de Estrogênio , Progestinas/farmacologia , Ligantes , Membrana Celular
2.
Autophagy ; 18(12): 2985-3003, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414338

RESUMO

Externalization of the phospholipid cardiolipin (CL) to the outer mitochondrial membrane has been proposed to act as a mitophagy trigger. CL would act as a signal for binding the LC3 macroautophagy/autophagy proteins. As yet, the behavior of the LC3-subfamily members has not been directly compared in a detailed way. In the present contribution, an analysis of LC3A, LC3B and LC3C interaction with CL-containing model membranes, and of their ability to translocate to mitochondria, is described. Binding of LC3A to CL was stronger than that of LC3B; both proteins showed a similar ability to colocalize with mitochondria upon induction of CL externalization in SH-SY5Y cells. Besides, the double silencing of LC3A and LC3B proteins was seen to decrease CCCP-induced mitophagy. Residues 14 and 18 located in the N-terminal region of LC3A were shown to be important for its recognition of damaged mitochondria during rotenone- or CCCP-induced mitophagy. Moreover, the in vitro results suggested a possible role of LC3A, but not of LC3B, in oxidized-CL recognition as a counterweight to excessive apoptosis activation. In the case of LC3C, even if this protein showed a stronger CL binding than LC3B or LC3A, the interaction was less specific, and colocalization of LC3C with mitochondria was not rotenone dependent. These results suggest that, at variance with LC3A, LC3C does not participate in cargo recognition during CL-mediated-mitophagy. The data support the notion that the various LC3-subfamily members might play different roles during autophagy initiation, identifying LC3A as a novel stakeholder in CL-mediated mitophagy. Abbreviations: ACTB/ß-actin: actin beta; Atg8: autophagy-related 8; CL: cardiolipin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DTT: DL-dithiothreitol; FKBP8: FKBP prolyl isomerase 8; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; IMM: inner mitochondrial membrane; LUV/LUVs: large unilamellar vesicle/s; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NME4/NDPK-D/Nm23-H4: NME/NM23 nucleoside diphosphate kinase 4; O/A: oligomycin A + antimycin A; OMM: outer mitochondrial membrane; PA: phosphatidic acid; PC: phosphatidylcholine; PG: phosphatidylglycerol; PINK1: PTEN induced putative kinase 1; PtdIns4P: phosphatidylinositol-4-phosphate; Rho-PE: lissamine rhodamine phosphatidylethanolamine; SUV/SUVs: small unilamellar vesicle/s.


Assuntos
Proteínas Associadas aos Microtúbulos , Mitofagia , Neuroblastoma , Humanos , Autofagia/fisiologia , Carbonil Cianeto m-Clorofenil Hidrazona , Cardiolipinas/metabolismo , Ácido gama-Aminobutírico , Proteínas Associadas aos Microtúbulos/metabolismo , Rotenona/farmacologia , Lipossomas Unilamelares
3.
Nat Commun ; 11(1): 4027, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788676

RESUMO

Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics.


Assuntos
Apoptose , Imageamento Tridimensional , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Fagocitose/efeitos dos fármacos , Fosfatidilserinas/metabolismo
4.
Talanta ; 195: 619-627, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625592

RESUMO

The cerebrospinal fluid (CSF) lipidome is attracting increasing attention due to the importance of lipids in brain molecular signaling and their involvement in several neurological diseases. Different solvent systems have been used for the extraction of multiple lipid classes from CSF but no comparative study of the effectiveness of these protocols has been carried out. To optimize CSF lipid extraction for lipidomic measurements by untargeted ultra-high performance liquid chromatography - mass spectrometry, we evaluate and compare two sample preparation protocols, one involving protein precipitation with isopropanol (IPA) and other consisting of a liquid-liquid extraction with chloroform-methanol. For that purpose, human CSF from neurologically healthy and normolipidemic volunteers was used. The criteria established to compare these two methods were based on four critical aspects of sample preparation: simplicity, lipid coverage, reproducibility and recovery efficiencies. We found that both methods were highly reproducible techniques (>75% of the lipids with coefficient of variation (CV) <30%). In terms of recovery, the single-step IPA procedure yielded better values for most of the lipid classes and it was less toxic and simpler than the liquid-liquid extraction method. In relation to lipid coverage, variation in selectivity was observed between methods, providing evidence that IPA was more selective for polar lipids. Overall, IPA precipitation provides excellent results in terms of simplicity of execution, lipid coverage, reproducibility and recovery. We conclude that it is a choice procedure for large-scale, untargeted lipid profiling using UHPLC-MS in CSF analysis.


Assuntos
2-Propanol/química , Lipídeos/líquido cefalorraquidiano , Solventes/química , Precipitação Química , Clorofórmio/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Metanol/química , Reprodutibilidade dos Testes
5.
Chem Phys Lipids ; 217: 29-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30359584

RESUMO

Sphingolipids consist of a sphingoid base N-linked to a fatty acyl chain. Among them, sphingomyelins (SM) are major components of mammalian cells, while ceramide (Cer) plays an important role as a lipid second messenger. We have performed a quantitative lipidomic study of Cer and SM species in different mammalian tissues (adipose tissue, liver, brain and blood serum of human, mice, rat and dog), as well as in cell cultures of mammalian origin (primary hepatocytes, immortalized MDCK cells, mice melanoma b16 cells, and mice primary CD4 + T lymphocytes) using an ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-ToF-MS)-based platform. The data have been compared with published, in general semi-quantitative, results from 20 other samples, with good agreement. The sphingoid base was predominantly d18-1 sphingosine (2-amino-4-octadecene-1,3-diol) in all cases. The fatty acid composition of SM was clearly different from that of Cer. In virtually all samples the most abundant Cer species were those containing C24:0 and C24:1 in their N-acyl chains, while the main species contained in SM was C16:0. Brain was the most divergent tissue, in which Cer and SM C18:0 were very abundant.


Assuntos
Ceramidas/metabolismo , Ácidos Graxos/análise , Esfingomielinas/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Cães , Feminino , Humanos , Fígado/química , Fígado/metabolismo , Células Madin Darby de Rim Canino , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade
6.
Biochim Biophys Acta Biomembr ; 1859(11): 2181-2192, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28803731

RESUMO

The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in those detergents that afforded the best solubility, reconstitution efficiency or spectral quality indicating that these criteria cannot be taken as unambiguous proof of nativeness without the support of direct activity measurements.


Assuntos
Colicinas/química , Colicinas/isolamento & purificação , Detergentes/química , Micelas , Sequência de Aminoácidos , Cromatografia em Gel , Dicroísmo Circular , Detergentes/farmacologia , Escherichia coli/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Análise de Sequência de Proteína , Solubilidade
7.
Colloids Surf B Biointerfaces ; 155: 173-181, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456048

RESUMO

Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.


Assuntos
Putrescina/química , RNA de Transferência/química , Espermidina/química , Espermina/química , Lipossomas Unilamelares/química , Portadores de Fármacos , Álcoois Graxos/química , Cinética , Modelos Químicos , Ácido Oleico/química , Origem da Vida , Fosfatidilcolinas/química , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/química , Saccharomyces cerevisiae/química , Eletricidade Estática , Termodinâmica
8.
Chem Phys Lipids ; 203: 54-70, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28104376

RESUMO

Clostridium perfringens alpha-toxin (ATX) is considered as a prototype of cytotoxic bacterial phospholipases C, and is the major virulence factor in C. perfringens-induced gas gangrene. It is known that, depending on the dose, ATX causes membrane disruption and cytolysis or only limited hydrolysis of its substrates. In the latter case, toxin activity leads to the unregulated generation of bioactive lipids that can ultimately induce cell death. We have characterized apoptosis and necrosis in highly ATX-sensitive, ganglioside-deficient cells exposed to different concentrations of ATX and we have studied the lipidomic profile of cells treated with ATX as compared to native cells to detect the main changes in the lipidomic profile and the possible involvement of lipid signals in cell death. ATX causes both apoptosis and necrosis, depending on dose and time. ATX activates cell death, stimulating the release of cytochrome C from mitochondria and the consequent activation of caspases-3. Moreover GM95 cells treated with ATX showed important lipidomic alterations, among them we detected a general decrease in several phospholipid species and important changes in lipids involved in programmed cell death e.g. ceramide. The data suggest two different mechanisms of cell death caused by ATX, one leading to (mainly saturated) glycerophospholipid hydrolysis related to an increase in diacylglycerols and associated to membrane damage and necrosis, and a second mechanism involving chiefly sphingomyelin hydrolysis and generation of proapoptotic lipidic mediators such as ceramide, N-acylethanolamine and saturated non-esterified fatty acids.


Assuntos
Toxinas Bacterianas/toxicidade , Proteínas de Ligação ao Cálcio/toxicidade , Lipídeos/química , Fosfolipases Tipo C/toxicidade , Animais , Toxinas Bacterianas/química , Proteínas de Ligação ao Cálcio/química , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Fosfolipases Tipo C/química
9.
Biochim Biophys Acta Gen Subj ; 1861(3): 664-672, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27993658

RESUMO

Genome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.


Assuntos
Membrana Celular/metabolismo , DNA Viral/genética , Adenosina Trifosfatases/metabolismo , Bacteriófago PRD1/genética , Capsídeo/metabolismo , DNA/genética , Genoma Viral/genética , Proteínas Virais/genética , Montagem de Vírus/genética
10.
Chem Commun (Camb) ; 53(5): 945-948, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28009021

RESUMO

The rational design and synthesis of a Trp-BODIPY cyclic peptide for the fluorescent labelling of apoptotic bodies is described. Affinity assays, confocal microscopy and flow cytometry analysis confirmed the binding of the peptide to negatively-charged phospholipids associated with apoptosis, and its applicability for the detection and characterisation of subcellular structures released by apoptotic cells.


Assuntos
Compostos de Boro/química , Vesículas Extracelulares/química , Fluorescência , Corantes Fluorescentes/química , Peptídeos Cíclicos/química , Triptofano/química , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Coloração e Rotulagem
11.
Autophagy ; 12(12): 2386-2403, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27764541

RESUMO

The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Cardiolipinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dronabinol/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas aos Microtúbulos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Pressão , Ligação Proteica/efeitos dos fármacos , Rotenona/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
12.
Colloids Surf B Biointerfaces ; 135: 18-26, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231862

RESUMO

Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface.


Assuntos
Calendula/química , Nanopartículas/química , Extratos Vegetais/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Ácidos e Sais Biliares/química , Túnica Conjuntiva/citologia , Túnica Conjuntiva/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos/química , Liofilização , Humanos , Lipídeos/química , Tamanho da Partícula , Cicatrização/efeitos dos fármacos
13.
Biophys J ; 108(7): 1672-1682, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25863059

RESUMO

Diacylglycerol (DAG)-induced activation of phosphatidylinositol-phospholipase C (PI-PLC) was studied with vesicles containing PI, either pure or in mixtures with dimyristoyl phosphatidylcholine, distearoyl phosphatidylcholine, sphingomyelin, or galactosylceramide, used as substrates. At 22°C, DAG at 33 mol % increased PI-PLC activity in all of the mixtures, but not in pure PI bilayers. DAG also caused an overall decrease in diphenylhexatriene fluorescence polarization (decreased molecular order) in all samples, and increased overall enzyme binding. Confocal fluorescence microscopy of giant unilamellar vesicles of all of the compositions under study, with or without DAG, and quantitative evaluation of the phase behavior using Laurdan generalized polarization, and of enzyme binding to the various domains, indicated that DAG activates PI-PLC whenever it can generate fluid domains to which the enzyme can bind with high affinity. In the specific case of PI/dimyristoyl phosphatidylcholine bilayers at 22°C, DAG induced/increased enzyme binding and activation, but no microscopic domain separation was observed. The presence of DAG-generated nanodomains, or of DAG-induced lipid packing defects, is proposed instead for this system. In PI/galactosylceramide mixtures, DAG may exert its activation role through the generation of small vesicles, which PI-PLC is known to degrade at higher rates. In general, our results indicate that global measurements obtained using fluorescent probes in vesicle suspensions in a cuvette are not sufficient to elucidate DAG effects that take place at the domain level. The above data reinforce the idea that DAG functions as an important physical agent in regulating membrane and cell properties.


Assuntos
Diglicerídeos/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Lipossomas Unilamelares/química , Diglicerídeos/química , Fosfoinositídeo Fosfolipase C/química , Lipossomas Unilamelares/metabolismo
14.
Biophys J ; 108(4): 863-871, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692591

RESUMO

In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle.


Assuntos
Histonas/química , Lipossomos/química , Fusão de Membrana , Fosfatos de Fosfatidilinositol/química
15.
FASEB J ; 29(6): 2371-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713054

RESUMO

Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, ß, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIß forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIß/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIß located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIß mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.


Assuntos
Membrana Celular/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Multimerização Proteica , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HL-60 , Humanos , Immunoblotting , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
16.
Biophys J ; 107(6): 1364-74, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229144

RESUMO

We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.


Assuntos
Éter , Bicamadas Lipídicas/química , Fosfolipídeos/química , Fenômenos Biomecânicos , Ésteres , Corantes Fluorescentes/metabolismo , Bicamadas Lipídicas/metabolismo , Permeabilidade , Transição de Fase
17.
Biophys J ; 106(5): 1092-100, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606933

RESUMO

Recent discoveries on the presence and location of phosphoinositides in the eukaryotic cell nucleoplasm and nuclear membrane prompted us to study the putative interaction of chromatin components with these lipids in model membranes (liposomes). Turbidimetric studies revealed that a variety of histones and histone combinations (H1, H2AH2B, H3H4, octamers) caused a dose-dependent aggregation of phosphatidylcholine vesicles (large unilamellar vesicle or small unilamellar vesicle) containing negatively charged phospholipids. 5 mol % phosphatidylinositol-4-phosphate (PIP) was enough to cause extensive aggregation under our conditions, whereas with phosphatidylinositol (PI) at least 20 mol % was necessary to obtain a similar effect. Histone binding to giant unilamellar vesicle and vesicle aggregation was visualized by confocal microscopy. Histone did not cause vesicle aggregation in the presence of DNA, and the latter was able to disassemble the histone-vesicle aggregates. At DNA/H1 weight ratios 0.1-0.5 DNA- and PIP-bound H1 appear to coexist. Isothermal calorimetry studies revealed that the PIP-H1 association constant was one order of magnitude higher than that of PI-H1, and the corresponding lipid/histone stoichiometries were ~0.5 and ~1, respectively. The results suggest that, in the nucleoplasm, a complex interplay of histones, DNA, and phosphoinositides may be taking place, particularly at the nucleoplasmic reticula that reach deep within the nucleoplasm, or during somatic and nonsomatic nuclear envelope assembly. The data described here provide a minimal model for analyzing and understanding the mechanism of these interactions.


Assuntos
Ligação Competitiva , DNA/metabolismo , Histonas/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Bicamadas Lipídicas/química , Modelos Biológicos , Ligação Proteica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
18.
Langmuir ; 30(8): 2117-28, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24490728

RESUMO

Recent research regarding 2-hydroxylated fatty acids (2OHFAs) showed clear evidence of their benefits in the treatment of cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. Monolayer compressibility isotherms and isothermal titration calorimetry of 2OHFA (C18-C22) in phosphatidylcholine/phosphatidylethanolamine/sphingomyelin/cholesterol (1:1:1:1 mole ratio), a mixture that mimics the composition of mammalian plasma membrane, were performed to assess the membrane binding capacity of 2OHFAs and their natural, nonhydroxylated counterparts. The results show that 2OHFAs are surface-active substances that bind membranes through exothermic, spontaneous processes. The main effects of 2OHFAs are a decrease in lipid order, with a looser packing of the acyl chains, and a decreased dipole potential, regardless of the 2OHFAs' relative affinity for the lipid bilayer. The strongest effects are usually observed for 2-hydroxyarachidonic (C20:4) acid, and the weakest one, for 2-hydroxydocosahexaenoic acid (C22:6). In addition, 2OHFAs cause increased hydration, except in gel-phase membranes, which can be explained by the 2OHFA preference for membrane defects. Concerning the membrane dipole potential, the magnitude of the reduction induced by 2OHFAs was particularly marked in the liquid-ordered (lo) phase (cholesterol/sphingomyelin-rich) membranes, those where order reduction was the smallest, suggesting a disruption of cholesterol-sphingolipid interactions that are responsible for the large dipole potential in those membranes. Moreover, 2OHFA effects were larger than for both lo and ld phases separately in model membranes with liquid disordered (ld)/lo coexistence when both phases were present in significant amounts, possibly because of the facilitating effect of ld/lo domain interfaces. The specific and marked changes induced by 2OHFAs in several membrane properties suggest that the initial interaction with the membrane and subsequent reorganization might constitute an important step in their mechanisms of action.


Assuntos
Ácidos Graxos Insaturados/química , Bicamadas Lipídicas/química , Modelos Químicos
19.
Biochim Biophys Acta ; 1838(1 Pt B): 388-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24099740

RESUMO

Human phospholipid scramblase 1 (SCR) was originally described as an intrinsic membrane protein catalyzing transbilayer phospholipid transfer in the absence of ATP. More recently, a role as a nuclear transcription factor has been proposed for SCR, either in addition or alternatively to its capacity to facilitate phospholipid flip-flop. Uncertainties exist as well from the structural point of view. A predicted α-helix (aa residues 288-306) located near the C-terminus has been alternatively proposed as a transmembrane domain, or as a protein core structural element. This paper explores the possibilities of the above helical segment as a transmembrane domain. To this aim two peptides were synthesized, one corresponding to the 19 α-helical residues, and one containing both the helix and the subsequent 12-residues constituting the C-end of the protein. The interaction of these peptides with lipid monolayers and bilayers was tested with Langmuir balance surface pressure measurements, proteoliposome reconstitution and analysis, differential scanning calorimetry, tests of bilayer permeability, and fluorescence confocal microscopy. Bilayers of 28 different lipid compositions were examined in which lipid electric charge, bilayer fluidity and lateral heterogeneity (domain formation) were varied. All the results concur in supporting the idea that the 288-306 peptide of SCR becomes membrane inserted in the presence of lipid bilayers. Thus, the data are in agreement with the possibility of SCR as an integral membrane protein, without rejecting alternative cell locations.


Assuntos
Bicamadas Lipídicas/química , Peptídeos/química , Proteínas de Transferência de Fosfolipídeos/química , Fosfolipídeos/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Humanos , Fluidez de Membrana , Dados de Sequência Molecular , Mutagênese Insercional , Peptídeos/síntese química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
20.
Biochim Biophys Acta ; 1838(1 Pt B): 223-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24016550

RESUMO

Conjugation is the most important mechanism for horizontal gene transfer and it is the main responsible for the successful adaptation of bacteria to the environment. Conjugative plasmids are the DNA molecules transferred and a multiprotein system encoded by the conjugative plasmid itself is necessary. The high number of proteins involved in the process suggests that they should have a defined location in the cell and therefore, they should be recruited to that specific point. One of these proteins is the coupling protein that plays an essential role in bacterial conjugation. TrwB is the coupling protein of R388 plasmid that is divided in two domains: i) The N-terminal domain referred as transmembrane domain and ii) a large cytosolic domain that contains a nucleotide-binding motif similar to other ATPases. To investigate the role of these domains in the subcellular location of TrwB, we constructed two mutant proteins that comprised the transmembrane (TrwBTM) or the cytoplasmic (TrwBΔN70) domain of TrwB. By immunofluorescence and GFP-fusion proteins we demonstrate that TrwB and TrwBTM mutant protein were localized to the cell pole independently of the remaining R388 proteins. On the contrary, a soluble mutant protein (TrwBΔN70) was localized to the cytoplasm in the absence of R388 proteins. However, in the presence of other R388-encoded proteins, TrwBΔN70 localizes uniformly to the cell membrane, suggesting that interactions between the cytosolic domain of TrwB and other membrane proteins of R388 plasmid may happen. Our results suggest that the transmembrane domain of TrwB leads the protein to the cell pole.


Assuntos
Membrana Celular/metabolismo , Conjugação Genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Membrana Celular/genética , Membrana Celular/ultraestrutura , Proteínas de Ligação a DNA/deficiência , Escherichia coli/genética , Escherichia coli/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA