Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 37(10): 2334-2349, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36001050

RESUMO

STUDY QUESTION: What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER: We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY: Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION: We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE: Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA: The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION: Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS: Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.


Assuntos
Leiomioma , Neoplasias Uterinas , Células Endoteliais/metabolismo , Feminino , Humanos , Leiomioma/diagnóstico , Leiomioma/patologia , Mutação , Miométrio/metabolismo , Análise de Célula Única , Microambiente Tumoral , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patologia
2.
Carcinogenesis ; 39(9): 1105-1116, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29912292

RESUMO

Unopposed oestrogen is responsible for approximately 80% of all the endometrial cancers. The relationship between unopposed oestrogen and endometrial cancer was indicated by the increase in the number of endometrial cancer cases due to the widespread use of oestrogen replacement therapy. Approximately 30% of the endometrial cancer patients have mutations in the Wnt signalling pathway. How the unbalanced ratios of ovarian hormones and the mutations in Wnt signalling pathway interact to cause endometrial cancer is currently unclear. To study this, we have developed a uterine epithelial cell-specific inducible cre mouse model and used 3D in vitro culture of human endometrial cancer cell lines. We showed that activating mutations in the Wnt signalling pathway for a prolonged period leads to endometrial hyperplasia but not endometrial cancer. Interestingly, unopposed oestrogen and activating mutations in Wnt signalling together drive the progression of endometrial hyperplasia to endometrial cancer. We have provided evidence that progesterone can be used as a targeted therapy against endometrial cancer cases presented with the activating mutations in Wnt signalling pathway.


Assuntos
Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/genética , Endométrio/patologia , Estradiol/farmacologia , Estrogênios/metabolismo , Progesterona/uso terapêutico , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hiperplasia Endometrial/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Data Brief ; 12: 208-212, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28443299

RESUMO

Wnt signaling plays an important role in uterine organogenesis and oncogenesis. Our mRNA expression data documents the expression of various Wnt pathway members during the key stages of uterine epithelial gland development. Our data illustrates the expression of Wnt signaling inhibitors (Axin2, Sfrp2, Sfrp4, Dkk1 and Dkk3) in mice uteri at postnatal day 6 (PND 6) and day 15 (PND 15). They also describe the expression pattern of the Wnt ligands (Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt5b, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a and Wnt10b) in mice uteri with or without progesterone treatment. Detailed interpretation and discussion of these data is presented in the research article entitled "Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus" [1].

4.
Dev Biol ; 423(2): 138-151, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28153546

RESUMO

In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signaling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signaling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000µm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/ß-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.


Assuntos
Epitélio/embriologia , Útero/embriologia , Via de Sinalização Wnt , Animais , Implantação do Embrião/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Período Pós-Parto/efeitos dos fármacos , Progesterona/farmacologia , Maturidade Sexual/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
5.
Oncotarget ; 7(40): 64836-64853, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27588493

RESUMO

Ovarian cancer (OC) is the most deadly gynaecological disease largely because the majority of patients are asymptomatic and diagnosed at later stages when cancer has spread to other vital organs. Therefore, the initial stages of this disease are poorly characterised. Women with BRCA1/2 mutations have a genetic predisposition for developing OC, but not all of these women develop the disease. Epidemiological findings show that lifestyle factors such as contraceptive use and pregnancy, a progesterone dominant state, decrease the risk of getting OC. How ovarian hormones modify the risk of OC is currently unclear. Our study identifies activated Wnt signalling to be a marker for precursor lesions of OC and successfully develops a mouse model that mimics the earliest events in pathogenesis of OC by constitutively activating ßcatenin. Using this model and human OC cells, we show that oestrogen promotes and progesterone suppresses the growth of OC cells.


Assuntos
Estrogênios/metabolismo , Neoplasias Ovarianas/metabolismo , Progesterona/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Animais , Carcinogênese , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Adulto Jovem , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA