RESUMO
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-ß (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-ß) signaling and TGF-ß trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-ß content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-ß or CXCL1).
Assuntos
Janus Quinase 1 , Selectina-P , Mielofibrose Primária , Pirimidinas , Receptores de Interleucina-8B , Fator de Crescimento Transformador beta , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Selectina-P/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/metabolismo , Camundongos , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Nitrilas/uso terapêutico , Nitrilas/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , HumanosRESUMO
BACKGROUND: Three-dimensional (3D) cell cultures are the new frontier for reproducing the tumor micro-environment in vitro. The aims of the study were (1) to establish primary 3D cell cultures from canine spontaneous neoplasms and (2) to demonstrate the morphological, phenotypic and genotypic similarities between the primary canine neoplasms and the corresponding 3D cultures, through the expression of tumor differentiation markers. RESULTS: Seven primary tumors were collected, including 4 carcinomas and 3 soft tissue sarcomas. 3D cell cultures reproduced the morphological features of the primary tumors and showed an overlapping immunophenotype of the primary epithelial tumors. Immunohistochemistry demonstrated the growth of stromal cells and macrophages admixed with the neoplastic epithelial component, reproducing the tumor microenvironment. Mesenchymal 3D cultures reproduced the immunophenotype of the primary tumor completely in 2 out of 3 examined cases while a discordant expression was documented for a single marker in one case. No single nucleotide variants or small indel were detected in TP53 or MDM2 genes, both in primary tumors and in 3D cell cultures specimens. In one sample, MDM2 amplicons were preferentially increased in number compared to TP53 ones, indicating amplification of MDM2, detectable both in the primary tumor and in the corresponding cell culture specimen. CONCLUSION: Here we demonstrate a good cell morphology, phenotype and genetic profile overlap between primary tumors and the corresponding 3D cultures grown in a repeatable system.
Assuntos
Doenças do Cão , Neoplasias , Animais , Cães , Genótipo , Fenótipo , Técnicas de Cultura de Células/veterinária , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões/veterinária , Neoplasias/veterinária , Microambiente Tumoral , Doenças do Cão/genéticaRESUMO
Immuno-oncology research has brought to light the paradoxical role of immune cells in the induction and elimination of cancer. Programmed cell death protein 1 (PD1), expressed by tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PDL1), expressed by tumor cells, are immune checkpoint proteins that regulate the antitumor adaptive immune response. This study aimed to validate commercially available PDL1 antibodies in canine tissue and then, applying standardized methods and scoring systems used in human pathology, evaluate PDL1 immunopositivity in different types of canine tumors. To demonstrate cross-reactivity, a monoclonal antibody (22C3) and polyclonal antibody (cod. A1645) were tested by western blot. Cross-reactivity in canine tissue cell extracts was observed for both antibodies; however, the polyclonal antibody (cod. A1645) demonstrated higher signal specificity. Canine tumor histotypes were selected based on the human counterparts known to express PDL1. Immunohistochemistry was performed on 168 tumors with the polyclonal anti-PDL1 antibody. Only membranous labeling was considered positive. PDL1 labeling was detected both in neoplastic and infiltrating immune cells. The following tumors were immunopositive: melanomas (17 of 17; 100%), renal cell carcinomas (4 of 17; 24%), squamous cell carcinomas (3 of 17; 18%), lymphomas (2 of 14; 14%), urothelial carcinomas (2 of 18; 11%), pulmonary carcinomas (2 of 20; 10%), and mammary carcinomas (1 of 31; 3%). Gastric (0 of 10; 0%) and intestinal carcinomas (0 of 24; 0%) were negative. The findings of this study suggest that PDL1 is expressed in some canine tumors, with high prevalence in melanomas.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder with limited therapeutic options. Insufficient understanding of driver mutations and poor fidelity of currently available animal models has limited the development of effective therapies. Since GATA1 deficient megakaryocytes sustain myelofibrosis, we hypothesized that they may also induce fibrosis in lungs. We discovered that lungs from IPF patients and Gata1low mice contain numerous GATA1negative immune-poised megakaryocytes that, in mice, have defective RNA-seq profiling and increased TGF-ß1, CXCL1 and P-selectin content. With age, Gata1low mice develop fibrosis in lungs. Development of lung fibrosis in this model is prevented by P-selectin deletion and rescued by P-selectin, TGF-ß1 or CXCL1 inhibition. Mechanistically, P-selectin inhibition decreases TGF-ß1 and CXCL1 content and increases GATA1positive megakaryocytes while TGF-ß1 or CXCL1 inhibition decreased CXCL1 only. In conclusion, Gata1low mice are a novel genetic-driven model for IPF and provide a link between abnormal immune-megakaryocytes and lung fibrosis.
RESUMO
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Assuntos
Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Humanos , Camundongos , Animais , Mielofibrose Primária/patologia , Transtornos Mieloproliferativos/genética , Transdução de Sinais , Neoplasias/complicações , Citocinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismoRESUMO
The bone marrow (BM) and spleen from patients with myelofibrosis (MF), as well as those from the Gata1low mouse model of the disease contain increased number of abnormal megakaryocytes. These cells express high levels of the adhesion receptor P-selectin on their surface, which triggers a pathologic neutrophil emperipolesis, leading to increased bioavailability of transforming growth factor-ß (TGF-ß) in the microenvironment and disease progression. With age, Gata1low mice develop a phenotype similar to that of patients with MF, which is the most severe of the Philadelphia-negative myeloproliferative neoplasms. We previously demonstrated that Gata1low mice lacking the P-selectin gene do not develop MF. In the current study, we tested the hypothesis that pharmacologic inhibition of P-selectin may normalize the phenotype of Gata1low mice that have already developed MF. To test this hypothesis, we have investigated the phenotype expressed by aged Gata1low mice treated with the antimouse monoclonal antibody RB40.34, alone and also in combination with ruxolitinib. The results indicated that RB40.34 in combination with ruxolitinib normalizes the phenotype of Gata1low mice with limited toxicity by reducing fibrosis and the content of TGF-ß and CXCL1 (two drivers of fibrosis in this model) in the BM and spleen and by restoring hematopoiesis in the BM and the architecture of the spleen. In conclusion, we provide preclinical evidence that treatment with an antibody against P-selectin in combination with ruxolitinib may be more effective than ruxolitinib alone to treat MF in patients.
Assuntos
Mielofibrose Primária , Animais , Camundongos , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Anticorpos Monoclonais/farmacologia , Selectina-P , Fator de Crescimento Transformador beta/uso terapêutico , FibroseRESUMO
A 15-years-old, captive, female raccoon (Procyon lotor) was necropsied after a one-week history of apathy and self-isolation. Gross changes consisted of the severe enlargement of the mesenteric lymph node; hepatosplenomegaly with multifocal to coalescing, white tan nodules in the spleen and liver,; and pale kidneys. Histologically, neoplastic CD79α-positive lymphocytes effaced the mesenteric lymph node and multifocally infiltrated the spleen, liver, and kidneys, and focally infiltrated the heart. Based on pathological and immunohistochemical findings, as well as the canine-adapted World Health Organization (WHO) diagnostic criteria, a diagnosis of diffuse large B-cell lymphoma (DLBCL) was made.
RESUMO
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the canine gastrointestinal tract and are diagnosed by the immunohistochemical expression of the receptor tyrosine kinase (RTK) KIT. Activating mutations of the proto-oncogenes c-KIT and PDGFRA drive GIST oncogenesis and are used to predict the response to RTK-inhibitors in human oncology. Currently, the frequency and significance of these mutations in canine GIST have not been adequately explored. Therefore, we investigated the mutational status of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) genes by PCR followed by fragment analysis for c-KIT deletions and PCR followed by screening with DHPLC and direct sequencing confirmation for single nucleotide variations in 17 formalin-fixed paraffin-embedded canine GISTs confirmed by KIT immunopositivity. c-KIT mutations were detected in 47% of cases, with a mutation detection rate significantly higher (p = 0.0004, Fisher's exact test) and always involving exon 11. A PDGFRA gene mutation (exon 18) was identified in one case. Even if follow-up data were not available for all cases, four cases with documented abdominal metastases displayed c-KIT mutations. These data confirm that c-KIT exon 11 mutations occur frequently in canine GISTs, and identify the presence of a PDGFRA mutation similar to human GISTs. This study also suggests a potential association of c-KIT mutation with more aggressive biological behavior.
RESUMO
A major role for human (h)CXCL8 (interleukin-8) in the pathobiology of myelofibrosis (MF) has been suggested by observations indicating that MF megakaryocytes express increased levels of hCXCL8 and that plasma levels of this cytokine in MF patients are predictive of poor patient outcomes. Here, we demonstrate that, in addition to high levels of TGF-ß, the megakaryocytes from the bone marrow of the Gata1 low mouse model of myelofibrosis express high levels of murine (m)CXCL1, the murine equivalent of hCXCL8, and its receptors CXCR1 and CXCR2. Treatment with the CXCR1/R2 inhibitor, Reparixin in aged-matched Gata1 low mice demonstrated reductions in bone marrow and splenic fibrosis. Of note, the levels of fibrosis detected using two independent methods (Gomori and reticulin staining) were inversely correlated with plasma levels of Reparixin. Immunostaining of marrow sections indicated that the bone marrow from the Reparixin-treated group expressed lower levels of TGF-ß1 than those expressed by the bone marrow from vehicle-treated mice while the levels of mCXCL1, and expression of CXCR1 and CXCR2, were similar to that of vehicle-treated mice. Moreover, immunofluorescence analyses performed on bone marrow sections from Gata1 low mice indicated that treatment with Reparixin induced expression of GATA1 while reducing expression of collagen III in megakaryocytes. These data suggest that in Gata1low mice, Reparixin reduces fibrosis by reducing TGF-ß1 and collagen III expression while increasing GATA1 in megakaryocytes. Our results provide a preclinical rationale for further evaluation of this drug alone and in combination with current JAK inhibitor therapy for the treatment of patients with myelofibrosis.
RESUMO
Real-time in vivo imaging provides an essential window into the spatiotemporal cellular events contributing to tissue development and pathology. By coupling longitudinal intravital imaging with genetic lineage tracing, here we capture the earliest cellular events arising in response to active Wnt/ß-catenin signaling and the ensuing impact on the organization and differentiation of the mammary epithelium. This enables us to interrogate how Wnt/ß-catenin regulates the dynamics of distinct subpopulations of mammary epithelial cells in vivo and in real time. We show that ß-catenin stabilization, when targeted to either the mammary luminal or basal epithelial lineage, leads to cellular rearrangements that precipitate the formation of hyperplastic lesions that undergo squamous transdifferentiation. These results enhance our understanding of the earliest stages of hyperplastic lesion formation in vivo and reveal that, in mammary neoplastic development, ß-catenin activation dictates a hair follicle/epidermal differentiation program independently of the targeted cell of origin.
Assuntos
Glândulas Mamárias Animais , beta Catenina , Animais , Células Epiteliais/metabolismo , Epitélio/metabolismo , Hiperplasia/patologia , Glândulas Mamárias Animais/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismoRESUMO
Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-ß1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.
Assuntos
Citocinas , Fator de Transcrição GATA1 , Mielofibrose Primária , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologiaRESUMO
Immunohistochemistry (IHC) is a widely used technique in diagnostic pathology, but the simultaneous analysis of more than one antibody at a time with different chromogens is rather complex, time-consuming, and quite expensive. In order to facilitate the identification of mast cells (MCs) during immunohistochemical analysis of membrane and/or nuclear markers, we propose a new staining method that includes the association of IHC and toluidine blue as a counterstain. To achieve this goal, we tested c-kit, Ki67, and cannabinoid receptor 2 on several cases of cutaneous canine mast cell tumors (MCTs), cutaneous mastocytosis, and atopic dermatitis. The results obtained show how this double staining technique, although limited to non-cytoplasmic markers and of little use in poorly differentiated MCTs in which MC metachromasia is hard to see, can be used during the evaluation of nuclear and/or membranous immunohistochemical markers in all canine cutaneous disorders, especially if characterized by the presence of a low number of MCs. It can help to evaluate those MCTs in which neoplastic MCs must be clearly distinguished from inflammatory cells that can infiltrate the tumor itself, in facilitating the calculation of the Ki67 index. Moreover, it can be used to study the expression of new markers in both animal and human tissues containing MCs and in MC disorders.
RESUMO
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are major actors in multidrug resistance (MDR) phenomenon in both human and canine mammary carcinomas (CMCs). The aim of this study was to investigate an association between the intrinsic expression of P-gp and BCRP compared to the immunophenotypes and outcome in CMCs. Fifty CMCs were evaluated at immunohistochemistry (IHC) for P-gp, BCRP, Estrogen receptor alpha (ER), Progesterone receptors (PR), Human Epidermal Growth Factor Receptor type 2 (HER2), basal cytokeratins 5/6 (CK5/6), Epidermal Growth Factor Receptor 1 (EGFR), and Ki67 proliferation index. P-gp and BCRP positive cases were, respectively, 52% and 74.5%, with a significantly higher expression of BCRP than P-gp. Five immunophenotypes were defined in 37 out of 50 CMCs: 9 (24.3%) Luminal A, 5 (13.5%) Luminal B, 9 (24.3%) HER2 overexpressing, 9 (24.3%) Triple-negative basal-like, and 5 (13.5%) Triple-negative non-basal-like. In all CMCs at least one marker was expressed. Follow-up data were available for 25 animals. The average cancer-specific survival was 739 ± 444 days. A number of CMCs bear a high expression of P-gp and BCRP but no significant association was found between their expression and the immunophenotypes, Ki67 index, the histological grade, and tumor-related death.
RESUMO
In 2002, we discovered that mice carrying the hypomorphic Gata1low mutation that reduces expression of the transcription factor GATA1 in megakaryocytes (Gata1low mice) develop myelofibrosis, a phenotype that recapitulates the features of primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms (MPNs). At that time, this discovery had a great impact on the field because mutations driving the development of PMF had yet to be discovered. Later studies identified that PMF, as the others MPNs, is associated with mutations activating the thrombopoietin/JAK2 axis raising great hope that JAK inhibitors may be effective to treat the disease. Unfortunately, ruxolitinib, the JAK1/2 inhibitor approved by FDA and EMEA for PMF, ameliorates symptoms but does not improve the natural course of the disease, and the cure of PMF is still an unmet clinical need. Although GATA1 is not mutated in PMF, reduced GATA1 content in megakaryocytes as a consequence of ribosomal deficiency is a hallmark of myelofibrosis (both in humans and mouse models) and, in fact, a driving event in the disease. Conversely, mice carrying the hypomorphic Gata1low mutation express an activated TPO/JAK2 pathway and partially respond to JAK inhibitors in a fashion similar to PMF patients (reduction of spleen size but limited improvement of the natural history of the disease). These observations cross-validated Gata1low mice as a bona fide animal model for PMF and prompted the use of this model to identify abnormalities that might be targeted to cure the disease. We will summarize here data generated in Gata1low mice indicating that the TGF-ß/P-selectin axis is abnormal in PMF and represents a novel target for its treatment.
Assuntos
Modelos Animais de Doenças , Fator de Transcrição GATA1/fisiologia , Megacariócitos/patologia , Mielofibrose Primária/terapia , Animais , Humanos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Mielofibrose Primária/genética , Mielofibrose Primária/patologiaRESUMO
OBJECTIVES: Bronchopulmonary sequestration (BPS) is the second most common congenital lung malformation, with an estimated incidence ranging from 0.15% to 1.8%. Surgical treatment is elective in patients with symptoms, but the management of asymptomatic patients remains controversial. METHODS: We retrospectively reviewed the medical records of 99 patients treated for BPS in our institution from January 2000 to December 2015. BPS was diagnosed prenatally in 86 (87%) cases. Management throughout this 16-year period was based on 3 interventions: resection by open surgery, resection by thoracoscopy and embolization. RESULTS: Among the 86 patients with a prenatal diagnosis of BPS, 14% had symptoms at birth and 10% had delayed symptoms at a median delay of 8 months (4.5-42 months). For the other 13 patients, symptoms occurred at a median age of 34 months (range 3-96 months). Embolization of the feeding vessel was performed in 46 patients with 6 secondary surgical resections (13%). A total of 59 patients were operated on: 23 cases by open surgery and 36 cases by thoracoscopy. The mean hospitalization stay was significantly longer for open surgery: 4.8 ± 1.3 days vs 4.1 ±1.5 days, respectively (P = 0.03). Differences in hospitalization stay were also found between asymptomatic and symptomatic patients: 3.5 ± 1.2 vs 5.1 ±1.6 days, respectively (P = 0.002). Two of the operated patients died. CONCLUSIONS: When surgery is chosen, thoracoscopy appears to be a valuable procedure. A better understanding of the natural history of BPS is still needed to define the optimal management and the respective roles of surgery, embolization or non-interventional follow-up.