Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490595

RESUMO

Along with CD4+ T lymphocytes, macrophages are a major cellular source of HIV-1 replication and a potential viral reservoir. Following entry and reverse transcription in macrophages, cloaking of the viral cDNA by the HIV-1 capsid limits its cytosolic detection, enabling efficient replication. However, whether incoming HIV-1 particles are sensed by macrophages prior to reverse transcription remains unclear. Here, we show that HIV-1 triggers a broad expression of interferon (IFN)-stimulated genes (ISG) in monocyte-derived macrophages within a few hours after infection. This response does not require viral reverse transcription or the presence of HIV-1 RNA within particles, but viral fusion is essential. This response is elicited by viruses carrying different envelope proteins and thus different receptors to proceed for viral entry. Expression of ISG in response to viral entry requires TBK1 activity and type I IFNs signaling. Remarkably, the ISG response is transient but affects subsequent viral spread. Together, our results shed light on an early step of HIV-1 sensing by macrophages at the level of entry, which confers an early protection through type I IFN signaling and has potential implications in controlling the infection.IMPORTANCE HIV infection is restricted to T lymphocytes and macrophages. HIV-1-infected macrophages are found in many tissues of infected patients, even under antiretroviral therapy, and are considered a viral reservoir. How HIV-1 is detected and what type of responses are elicited upon sensing remain in great part elusive. The kinetics and localization of the production of cytokines such as interferons in response to HIV is of critical importance to understanding how the infection and the immune response are established. Our study provides evidence that macrophages can detect HIV-1 as soon as it enters the cell. Interestingly, this sensing is independent of the presence of viral nucleic acids within the particles but requires their fusion with the macrophages. This triggers a low interferon response, which activates an antiviral program protecting cells against further viral challenge and thus potentially limiting the spread of the infection.


Assuntos
HIV-1/imunologia , HIV-1/fisiologia , Imunidade Inata , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Internalização do Vírus , Células Cultivadas , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo
2.
Retrovirology ; 11: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383984

RESUMO

BACKGROUND: Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains. RESULTS: Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages. CONCLUSION: Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys.


Assuntos
Endocitose/efeitos dos fármacos , Produtos do Gene nef/metabolismo , Ferro/metabolismo , Receptores da Transferrina/antagonistas & inibidores , Vírus da Imunodeficiência Símia/fisiologia , Transferrina/metabolismo , Animais , Haplorrinos
3.
J Exp Med ; 210(12): 2523-38, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24145510

RESUMO

HIV-1-infected macrophages likely represent viral reservoirs, as they accumulate newly formed virions in internal virus-containing compartments (VCCs). However, the nature and biogenesis of VCCs remain poorly defined. We show that upon HIV-1 infection of primary human macrophages, Gag is recruited to preexisting compartments containing the scavenger receptor CD36, which then become VCCs. Silencing of CD36 in HIV-1-infected macrophages decreases the amount of virions released. Strikingly, soluble anti-CD36 antibodies, but not the natural ligands of CD36, inhibit release of virions from HIV-1-infected macrophages and the transmission of virus to CD4(+) T cells. The effect of the antibodies is potent, rapid, and induces the retention of virions within VCCs. Ectopic expression of CD36 in HeLa cells renders them susceptible to the inhibitory effect of the anti-CD36 mAb upon HIV-1 infection. We show that the anti-CD36 mAb inhibits HIV-1 release by clustering newly formed virions at their site of budding, and that signaling via CD36 is not required. Thus, HIV-1 reservoirs in macrophages may be tackled therapeutically using anti-CD36 antibodies to prevent viral dissemination.


Assuntos
Antígenos CD36/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Sequência de Aminoácidos , Anticorpos Biespecíficos , Anticorpos Bloqueadores , Anticorpos Monoclonais , Especificidade de Anticorpos , Antígenos CD36/antagonistas & inibidores , Antígenos CD36/genética , Células Cultivadas , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/transmissão , HIV-1/patogenicidade , HIV-1/fisiologia , Células HeLa , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Dados de Sequência Molecular , Vírion/imunologia , Vírion/patogenicidade , Vírion/fisiologia , Montagem de Vírus/imunologia , Liberação de Vírus/imunologia
4.
PLoS One ; 8(7): e69450, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922713

RESUMO

During HIV pathogenesis, infected macrophages behave as "viral reservoirs" that accumulate and retain virions within dedicated internal Virus-Containing Compartments (VCCs). The nature of VCCs remains ill characterized and controversial. Using wild-type HIV-1 and a replication-competent HIV-1 carrying GFP internal to the Gag precursor, we analyzed the biogenesis and evolution of VCCs in primary human macrophages. VCCs appear roughly 14 hours after viral protein synthesis is detected, initially contain few motile viral particles, and then mature to fill up with virions that become packed and immobile. The amount of intracellular Gag, the proportion of dense VCCs, and the density of viral particles in their lumen increased with time post-infection. In contrast, the secretion of virions, their infectivity and their transmission to T cells decreased overtime, suggesting that HIV-infected macrophages tend to pack and retain newly formed virions into dense compartments. A minor proportion of VCCs remains connected to the plasma membrane overtime. Surprisingly, live cell imaging combined with correlative light and electron microscopy revealed that such connections can be transient, highlighting their dynamic nature. Together, our results shed light on the late phases of the HIV-1 cycle and reveal some of its macrophage specific features.


Assuntos
Compartimento Celular , Membrana Celular/virologia , HIV-1/fisiologia , Macrófagos/patologia , Macrófagos/virologia , Vírion/fisiologia , Adulto , Membrana Celular/ultraestrutura , Espaço Extracelular/virologia , HIV-1/ultraestrutura , Humanos , Macrófagos/ultraestrutura , Modelos Biológicos , Fatores de Tempo , Vírion/ultraestrutura
5.
J Cell Biol ; 199(3): 467-79, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23091068

RESUMO

Macrophages are long-lived target cells for HIV infection and are considered viral reservoirs. HIV assembly in macrophages occurs in virus-containing compartments (VCCs) in which virions accumulate and are stored. The regulation of the trafficking and release of these VCCs remains unknown. Using high resolution light and electron microscopy of HIV-1-infected primary human macrophages, we show that the spatial distribution of VCCs depended on the microtubule network and that VCC-limiting membrane was closely associated with KIF3A+ microtubules. Silencing KIF3A strongly decreased virus release from HIV-1-infected macrophages, leading to VCC accumulation intracellularly. Time-lapse microscopy further suggested that VCCs and associated KIF3A move together along microtubules. Importantly, KIF3A does not play a role in HIV release from T cells that do not possess VCCs. These results reveal that HIV-1 requires the molecular motor KIF3 to complete its cycle in primary macrophages. Targeting this step may lead to novel strategies to eliminate this viral reservoir.


Assuntos
Infecções por HIV/virologia , HIV/fisiologia , Cinesinas/metabolismo , Macrófagos/virologia , Microtúbulos/virologia , Vírion/fisiologia , Western Blotting , Células Cultivadas , Humanos , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA