Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(4): 537-553.e5, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579684

RESUMO

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.


Assuntos
Cistos , Doenças Renais Policísticas , Humanos , Camundongos , Animais , Códon sem Sentido/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/terapia , Doenças Renais Policísticas/metabolismo , Rim/metabolismo , Organoides/metabolismo , Cistos/genética , Cistos/metabolismo , Glicosídeos/metabolismo
2.
J Cyst Fibros ; 20(3): 436-442, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558100

RESUMO

BACKGROUND: Promoting full-length protein production is a requisite step to address some of the remaining unmet medical need for those with Cystic Fibrosis (CF) nonsense alleles. ELX-02 promotes read-through of mRNA transcripts bearing nonsense mutations, including the most common CF nonsense allele G542X, in several different preclinical models including human bronchial epithelial cells. Here we evaluate ELX-02 mediated read-through using the CFTR-dependent Forskolin-induced swelling (FIS) assay across a selection of G542X genotype patient derived organoids (PDOs). METHODS: CFTR functional restoration was evaluated in ELX-02 treated G542X homozygous and heterozygous PDOs in the CFTR-dependent FIS assay. CFTR mRNA abundance and integrity were evaluated by qPCR and Nanostring analysis while PDO protein was detected by capillary based size-exclusion chromatography. RESULTS: PDOs homozygous for G542X or heterozygous with a second minimally functional allele had significantly increased CFTR activity with ELX-02 in a dose-dependent fashion across a variety of forskolin induction concentrations. The functional increases are similar to those obtained with tezacaftor/ivacaftor in F508del homozygous PDOs. Increased CFTR C- and B-band protein was observed in accordance with increased function. In addition, ELX-02 treatment of a G542X/G542X PDO results in a 5-fold increase in CFTR mRNA compared with vehicle treated, resulting in normalization of CFTR mRNA as measured via Nanostring. CONCLUSIONS: These data with ELX-02 in PDOs are consistent with previous G542X model evaluations. These results also support the on-going clinical evaluation of ELX-02 as a read-through agent for CF caused by the G542X allele.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Furanos/farmacologia , Intestinos/metabolismo , Organoides/metabolismo , Alelos , Células Cultivadas , Códon sem Sentido , Genótipo , Humanos
3.
J Pharmacol Exp Ther ; 374(2): 264-272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32376628

RESUMO

ELX-02 is a clinical stage, small-molecule eukaryotic ribosomal selective glycoside acting to induce read-through of premature stop codons (PSCs) that results in translation of full-length protein. However, improved read-through at PSCs has raised the question of whether native stop codon (NSC) fidelity would be impacted. Here, we compare read-through by ELX-02 in PSC and NSC contexts. DMS-114 cells containing a PSC in the TP53 gene were treated with ELX-02 and tested for increased nuclear p53 protein expression while also monitoring two other proteins for NSC read-through. Additionally, blood samples were taken from healthy subjects pre- and post-treatment with ELX-02 (0.3-7.5 mg/kg). These samples were processed to collect white blood cells and then analyzed by western blot to identify native and potentially elongated proteins from NSC read-through. In a separate experiment, lymphocytes cultivated with vehicle or ELX-02 (20 and 100 µg/ml) were subjected to proteomic analysis. We found that ELX-02 produced significant read-through of the PSC found in TP53 mRNA in DMS-114 cells, resulting in increased p53 protein expression and consistent with decreased nonsense-mediated mRNA degradation. NSC read-through protein products were not observed in either DMS-114 cells or in clinical samples from subjects dosed with ELX-02. The number of read-through proteins identified by using proteomic analysis was lower than estimated, and none of the NSC read-through products identified with >2 peptides showed dose-dependent responses to ELX-02. Our results demonstrate significant PSC read-through by ELX-02 with maintained NSC fidelity, thus supporting the therapeutic utility of ELX-02 in diseases resulting from nonsense alleles. SIGNIFICANCE STATEMENT: ELX-02 produces significant read-through of premature stop codons leading to full-length functional protein, demonstrated here by using the R213X mutation in the TP53 gene of DMS-114 cells. In addition, three complementary techniques suggest that ELX-02 does not promote read-through of native stop codons at concentrations that lead to premature stop codon read-through. Thus, ELX-02 may be a potential therapeutic option for nonsense mutation-mediated genetic diseases.


Assuntos
Códon de Terminação/efeitos dos fármacos , Códon de Terminação/genética , Furanos/farmacologia , Proteômica , Linhagem Celular Tumoral , Genes p53/genética , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
4.
Dev Cell ; 23(6): 1176-88, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23177649

RESUMO

A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development.


Assuntos
Proteína HMGA2/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/biossíntese , Receptor IGF Tipo 1/biossíntese , Células Satélites de Músculo Esquelético/metabolismo , Fator de Transcrição Sp1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA