Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133932

RESUMO

The European LeukemiaNet (ELN) genetic risk classifications were developed based on data from younger adults receiving intensive chemotherapy. Emerging analyses from patients receiving less-intensive therapies prompted a proposal for an ELN genetic risk classification specifically for this patient population.

2.
Blood ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991192

RESUMO

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

3.
Expert Rev Mol Diagn ; 24(7): 591-600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054632

RESUMO

INTRODUCTION: Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care. AREAS COVERED: In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays. The authors explain why distinguishing somatic from germline alleles is critical for optimal management. Finally, they introduce emerging technologies, such as long-read, whole exome/genome, and single-cell sequencing, which are reserved for research purposes currently but will become clinical tests soon. EXPERT OPINION: The authors describe challenges to the adoption of comprehensive genomic tests for those in resource-constrained environments and for inclusion into clinical trials. In the future, all aspects of patient care will likely be influenced by the adaptation of artificial intelligence and mathematical modeling, fueled by rapid advances in telecommunications.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Técnicas de Diagnóstico Molecular/métodos , Genômica/métodos
4.
Clin Cancer Res ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078402

RESUMO

Children with certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in other HM. For some hematopoietic malignancy predisposition (HMP) disorders, specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation (HSCT) can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by an HSCT specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.

5.
Gynecol Oncol ; 187: 235-240, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823308

RESUMO

Historically, the increased incidence of myeloid neoplasms observed in individuals with breast and ovarian cancer has been attributed exclusively to prior exposure to cancer-directed therapies. However, as the association between deleterious germline variants and the development of hematopoietic malignancies (HMs) becomes better established, we propose the increased incidence of myeloid neoplasms in those with breast and ovarian cancer may be at least partially related to underlying germline cancer predisposition alleles. Deleterious germline variants in BRCA1/2, ATM, CHEK2, PALB2, and other related genes prevent normal homologous recombination DNA repair of double-strand breaks, leading to reliance on less effective repair mechanisms. This results in a high lifetime risk of breast and ovarian cancer, and likely also increases the risk of subsequent therapy-related myeloid neoplasms (t-MNs). These deleterious germline variants likely increase the risk for de novo HMs as well, as evidenced by the increased incidence of HMs observed in those with deleterious germline BRCA1/2 variants even in the absence of prior cancer-directed therapy. Thus, the association between poly(ADP-ribose) polymerase (PARP) inhibitors and other solid tumor directed therapies and the development of t-MNs may be confounded by the presence of deleterious germline variants which inherently increase the risk of both de novo and t-MNs, and additional data regarding the direct toxic effects of these drugs on bone marrow function are needed.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias da Mama/genética , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/epidemiologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Hematológicas/genética , Genes BRCA2 , Proteína do Grupo de Complementação N da Anemia de Fanconi
6.
Am Soc Clin Oncol Educ Book ; 44(3): e432218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768412

RESUMO

Although numerous barriers for clinical germline cancer predisposition testing exist, the increasing recognition of deleterious germline DNA variants contributing to myeloid malignancy risk is yielding steady improvements in referrals for testing and testing availability. Many germline predisposition alleles are common in populations, and the increasing number of recognized disorders makes inherited myeloid malignancy risk an entity worthy of consideration for all patients regardless of age at diagnosis. Germline testing is facilitated by obtaining DNA from cultured skin fibroblasts or hair bulbs, and cascade testing is easily performed via buccal swab, saliva, or blood. Increasingly as diagnostic criteria and clinical management guidelines include germline myeloid malignancy predisposition, insurance companies recognize the value of testing and provide coverage. Once an individual is recognized to have a deleterious germline variant that confers risk for myeloid malignancies, a personalized cancer surveillance plan can be developed that incorporates screening for other cancer risk outside of the hematopoietic system and/or other organ pathology. The future may also include monitoring the development of clonal hematopoiesis, which is common for many of these cancer risk disorders and/or inclusion of strategies to delay or prevent progression to overt myeloid malignancy. As research continues to identify new myeloid predisposition disorders, we may soon recommend testing for these conditions for all patients diagnosed with a myeloid predisposition condition.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/diagnóstico , Gerenciamento Clínico
8.
Cancer Discov ; 14(3): 396-405, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426560

RESUMO

SUMMARY: The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Criança , Humanos , Síndromes Mielodisplásicas/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética
9.
Best Pract Res Clin Haematol ; 37(1): 101537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490765

RESUMO

Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Predisposição Genética para Doença , Penetrância , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Células Germinativas , Mutação em Linhagem Germinativa , Peptídeos e Proteínas de Sinalização Intracelular
10.
Haematologica ; 109(7): 2085-2091, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205536

RESUMO

Genetic predisposition to hematologic malignancies has historically been addressed utilizing patients recruited from clinical trials and pedigrees constructed at major treatment centers. Such efforts leave unexplored the genetic basis of variations in risk by race/ethnic group shown in population-based surveillance data where cancer registration, compulsory by law, delivers universal enrollment. To address this, we performed exome sequencing on DNA isolated from newborn bloodspots derived from sibling pairs with early-onset cancers across California in which at least one of the siblings developed a hematologic cancer, using unbiased recruitment from the full state population. We identified pathogenic/likely pathogenic (P/ LP) variants among 1,172 selected cancer genes that were private or present at low allele frequencies in reference populations. Within 64 subjects from 32 families, we found 9 LP variants shared between siblings, and an additional 7 such variants in singleton children (not shared with their sibling). In 8 of the shared cases, the ancestral origin of the local haplotype that carries P/LP variants matched the dominant global ancestry of study participant families. This was the case for Latino sibling pairs on FLG and CBLB, non-Latino White sibling pairs in TP53 and NOD2, and a shared GATA2 variant for a non-Latino Black sibling pair. A new inherited mutation in HABP2 was identified in a sibling pair, one with diffuse large B-cell lymphoma and the other with neuroblastoma. Overall, the profile of P/LP germline variants across ancestral/ethnic groups suggests that rare alleles contributing to hematologic diseases originate within their race/ethnic origin parental populations, demonstrating the value of this discovery process in diverse, population-based registries.


Assuntos
Predisposição Genética para Doença , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/epidemiologia , Masculino , Feminino , Idade de Início , Sequenciamento do Exoma , Etnicidade/genética , California/epidemiologia , Pré-Escolar , Recém-Nascido , Criança , Linhagem , Frequência do Gene , Lactente
11.
Blood Cancer Discov ; 5(3): 164-179, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150184

RESUMO

Myeloid neoplasms arise from preexisting clonal hematopoiesis (CH); however, the role of CH in the pathogenesis of acute lymphoblastic leukemia (ALL) is unknown. We found that 18% of adult ALL cases harbored TP53, and 16% had myeloid CH-associated gene mutations. ALL with myeloid mutations (MyM) had distinct genetic and clinical characteristics, associated with inferior survival. By using single-cell proteogenomic analysis, we demonstrated that myeloid mutations were present years before the diagnosis of ALL, and a subset of these clones expanded over time to manifest as dominant clones in ALL. Single-cell RNA sequencing revealed upregulation of genes associated with cell survival and resistance to apoptosis in B-ALL with MyM, which responds better to newer immunotherapeutic approaches. These findings define ALL with MyM as a high-risk disease that can arise from antecedent CH and offer new mechanistic insights to develop better therapeutic and preventative strategies. SIGNIFICANCE: CH is a precursor lesion for lymphoblastic leukemogenesis. ALL with MyM has distinct genetic and clinical characteristics, associated with adverse survival outcomes after chemotherapy. CH can precede ALL years before diagnosis, and ALL with MyM is enriched with activated T cells that respond to immunotherapies such as blinatumomab. See related commentary by Iacobucci, p. 142.


Assuntos
Hematopoiese Clonal , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Hematopoiese Clonal/genética , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA