Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 34(10): 6475-6487, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38592419

RESUMO

Medical imaging is both valuable and essential in the care of patients. Much of this imaging depends on ionizing radiation with attendant responsibilities for judicious use when performing an examination. This responsibility applies in settings of both individual as well as multiple (recurrent) imaging with associated repeated radiation exposures. In addressing the roles and responsibilities of the medical communities in the paradigm of recurrent imaging, both the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) have issued position statements, each affirmed by other organizations. The apparent difference in focus and approach has resulted in a lack of clarity and continued debate. Aiming towards a coherent approach in dealing with radiation exposure in recurrent imaging, the IAEA convened a panel of experts, the purpose of which was to identify common ground and reconcile divergent perspectives. The effort has led to clarifying recommendations for radiation exposure aspects of recurrent imaging, including the relevance of patient agency and the provider-patient covenant in clinical decision-making. CLINICAL RELEVANCE STATEMENT: An increasing awareness, generating some lack of clarity and divergence in perspectives, with patients receiving relatively high radiation doses (e.g., ≥ 100 mSv) from recurrent imaging warrants a multi-stakeholder accord for the benefit of patients, providers, and the imaging community. KEY POINTS: • Recurrent medical imaging can result in an accumulation of exposures which exceeds 100 milli Sieverts. • Professional organizations have different perspectives on roles and responsibilities for recurrent imaging. • An expert panel reconciles differing perspectives for addressing radiation exposure from recurrent medical imaging.


Assuntos
Diagnóstico por Imagem , Exposição à Radiação , Humanos , Diagnóstico por Imagem/métodos , Exposição à Radiação/prevenção & controle , Doses de Radiação , Proteção Radiológica/métodos
2.
Cell Death Dis ; 8(6): e2875, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617445

RESUMO

BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the 'BRCAness' profile.


Assuntos
Processamento Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Genes BRCA2 , Mutação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Éxons , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fenótipo , Splicing de RNA , Transcrição Gênica
3.
Mutat Res ; 689(1-2): 50-8, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20471405

RESUMO

Homologous recombination is essential for repair of DNA interstrand cross-links and double-strand breaks. The Rad51C protein is one of the five Rad51 paralogs in vertebrates implicated in homologous recombination. A previously described hamster cell mutant defective in Rad51C (CL-V4B) showed increased sensitivity to DNA damaging agents and displayed genomic instability. Here, we identified a splice donor mutation at position +5 of intron 5 of the Rad51C gene in this mutant, and generated mice harboring an analogous base pair alteration. Rad51C(splice) heterozygous animals are viable and do not display any phenotypic abnormalities, however homozygous Rad51C(splice) embryos die during early development (E8.5). Detailed analysis of two CL-V4B revertants, V4B-MR1 and V4B-MR2, that have reduced levels of full-length Rad51C transcript when compared to wild type hamster cells, showed increased sensitivity to mitomycin C (MMC) in clonogenic survival, suggesting haploinsufficiency of Rad51C. Similarly, mouse Rad51C(splice/neo) heterozygous ES cells also displayed increased MMC sensitivity. Moreover, in both hamster revertants, Rad51C haploinsufficiency gives rise to increased frequencies of spontaneous and MMC-induced chromosomal aberrations, impaired sister chromatid cohesion and reduced cloning efficiency. These results imply that adequate expression of Rad51C in mammalian cells is essential for maintaining genomic stability and sister chromatid cohesion to prevent malignant transformation.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Instabilidade Genômica , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Feminino , Haploidia , Camundongos , Camundongos Endogâmicos C57BL , Mitomicina/farmacologia , Mutação , Gravidez , Troca de Cromátide Irmã
4.
Am J Hum Genet ; 86(2): 262-6, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137776

RESUMO

The iron-sulfur-containing DNA helicases XPD, FANCJ, DDX11, and RTEL represent a small subclass of superfamily 2 helicases. XPD and FANCJ have been connected to the genetic instability syndromes xeroderma pigmentosum and Fanconi anemia. Here, we report a human individual with biallelic mutations in DDX11. Defective DDX11 is associated with a unique cellular phenotype in which features of Fanconi anemia (drug-induced chromosomal breakage) and Roberts syndrome (sister chromatid cohesion defects) coexist. The DDX11-deficient patient represents another cohesinopathy, besides Cornelia de Lange syndrome and Roberts syndrome, and shows that DDX11 functions at the interface between DNA repair and sister chromatid cohesion.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Quebra Cromossômica , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Mutação/genética , Troca de Cromátide Irmã/genética , Xeroderma Pigmentoso/genética , Adolescente , Sequência de Bases , Pré-Escolar , RNA Helicases DEAD-box/deficiência , DNA Helicases/deficiência , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Neoplasias/genética , Linhagem , Fenótipo , Polônia , Gravidez , Síndrome
5.
Blood ; 114(1): 174-80, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19423727

RESUMO

FANCM is a component of the Fanconi anemia (FA) core complex and one FA patient (EUFA867) with biallelic mutations in FANCM has been described. Strikingly, we found that EUFA867 also carries biallelic mutations in FANCA. After correcting the FANCA defect in EUFA867 lymphoblasts, a "clean" FA-M cell line was generated. These cells were hypersensitive to mitomycin C, but unlike cells defective in other core complex members, FANCM(-/-) cells were proficient in monoubiquitinating FANCD2 and were sensitive to the topoisomerase inhibitor camptothecin, a feature shared only with the FA subtype D1 and N. In addition, FANCM(-/-) cells were sensitive to UV light. FANCM and a C-terminal deletion mutant rescued the cross-linker sensitivity of FANCM(-/-) cells, whereas a FANCM ATPase mutant did not. Because both mutants restored the formation of FANCD2 foci, we conclude that FANCM functions in an FA core complex-dependent and -independent manner.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , DNA Helicases/deficiência , Resistência a Medicamentos/genética , Resistência a Medicamentos/fisiologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Expressão Gênica , Humanos , Mutação , Tolerância a Radiação/genética , Tolerância a Radiação/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Ubiquitinação/genética , Raios Ultravioleta
6.
Mutat Res ; 601(1-2): 191-201, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16920162

RESUMO

Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (CA), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.


Assuntos
Proteína BRCA2/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Fibroblastos/metabolismo , Bleomicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Aberrações Cromossômicas/efeitos dos fármacos , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Metanossulfonato de Metila/farmacologia , Mitomicina/farmacologia , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos da radiação
7.
Mutat Res ; 600(1-2): 79-88, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16643964

RESUMO

The previously described Chinese hamster cell mutant V-C8 that is defective in Brca2 shows a very complex phenotype, including increased sensitivity towards a wide variety of DNA damaging agents, chromosomal instability, abnormal centrosomes and impaired formation of Rad51 foci in response to DNA damage. Here, we demonstrate that V-C8 cells display biallelic nonsense mutations in Brca2, one in exon 15 and the other in exon 16, both resulting in truncated Brca2 proteins. We generated several independent mitomycin C (MMC)-resistant clones from V-C8 cells that had acquired an additional mutation leading to the restoration of the open reading frame of one of the Brca2 alleles. In two of these revertants, V-C8-Rev 1 and V-C8-Rev 6, the reversions lead to the wild-type Brca2 sequence. The V-C8 revertants did not gain the entire wild-type phenotype and still show a 2.5-fold increased sensitivity to mitomycin C (MMC), higher levels of spontaneous and MMC-induced chromosomal aberrations, as well as abnormal centrosomes when compared to wild-type cells. Our results suggest that Brca2 heterozygosity in hamster cells primarily gives rise to sensitivity to DNA cross-linking agents, especially chromosomal instability, a feature that might also be displayed in BRCA2 heterozygous mutation carriers.


Assuntos
Linhagem Celular , Instabilidade Cromossômica , Códon sem Sentido , Cricetulus/genética , Genes BRCA2 , Alelos , Sequência de Aminoácidos , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Centrossomo/metabolismo , Aberrações Cromossômicas/efeitos dos fármacos , Códon de Terminação , Cricetinae , Reagentes de Ligações Cruzadas/farmacologia , Feminino , Heterozigoto , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Rad51 Recombinase/metabolismo , Troca de Cromátide Irmã
8.
Mutat Res ; 594(1-2): 39-48, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16154163

RESUMO

Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the "Rad51 foci phenotype" provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.


Assuntos
Proteína BRCA2/genética , Dano ao DNA/genética , Proteína do Grupo de Complementação L da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Rad51 Recombinase/biossíntese , Rad51 Recombinase/genética , Proteína BRCA2/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Humanos , Recombinação Genética
9.
Oncogene ; 21(32): 5002-5, 2002 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12118380

RESUMO

Fanconi anemia is a hereditary cancer susceptibility disorder characterized at the cellular level by spontaneous chromosomal instability and specific hypersensitivity to DNA cross-linking agents such as mitomycin C. This phenotype suggests a possible role for the Fanconi anemia proteins in the repair of DNA lesions induced by these agents, but the molecular mechanism underlying the defect in this disorder has not yet been identified. Here, we show that amongst eight so far identified complementation groups of Fanconi anemia, only fibroblasts derived from group D1 are defective in the formation of nuclear Rad51 foci after X-ray irradiation or mitomycin C treatment. This indicates that the FANCD1 gene product is uniquely involved in the assembly and/or stabilization of the Rad51 complex. Since DNA damage-induced Rad51 nuclear foci are thought to reflect repair of DNA double-strand breaks by homologous recombination, our results suggest that FANCD1 is likely to be involved in homologous recombination-dependent repair.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Mitomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Rad51 Recombinase , Recombinação Genética
10.
Hum Mol Genet ; 11(3): 273-81, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11823446

RESUMO

Fanconi anemia (FA) is a heterogeneous autosomal recessive chromosomal instability syndrome associated with diverse developmental abnormalities, progressive bone marrow failure and a predisposition to cancer. Spontaneous chromosomal breakage and hypersensitivity to DNA cross-linking agents characterize the cellular FA phenotype. The gene affected in FA complementation group G patients was initially identified as XRCC9, for its ability to partially correct the cellular phenotype of the Chinese hamster ovary (CHO) cell mutant UV40. By targeted disruption we generated Fancg/Xrcc9 null mice. Fancg knock-out (KO) mice were born at expected Mendelian frequencies and showed normal viability. In mice, functional loss of Fancg did not result in developmental abnormalities or a pronounced incidence of malignancies. During a 1 year follow-up, blood cell parameters of Fancg KO mice remained within normal values, revealing no signs of anemia. Male and female mice deficient in Fancg showed hypogonadism and impaired fertility, consistent with the phenotype of FA patients. Mouse embryonic fibroblasts (MEFs) from the KO animals exhibited the FA characteristic cellular response in showing enhanced spontaneous chromosomal instability and a hyper-responsiveness to the clastogenic and antiproliferative effects of the cross-linking agent mitomycin C (MMC). The sensitivity to UV, X-rays and methyl methanesulfonate, reported for the CHO mutant cell line UV40, was not observed in Fancg(-/-) MEFs. Despite a lack of hematopoietic failure in the KO mice, clonogenic survival of bone marrow cells in vitro was strongly reduced in the presence of MMC. The characteristics of the Fancg(-/-) mice closely resemble those reported for Fancc and Fanca null mice, supporting a tight interdependence of the corresponding gene products in a common pathway.


Assuntos
Proteínas de Ligação a DNA/genética , Mitomicina/farmacologia , Animais , DNA/efeitos dos fármacos , Dano ao DNA , Hipersensibilidade a Drogas , Anemia de Fanconi/genética , Proteína do Grupo de Complementação G da Anemia de Fanconi , Feminino , Fibroblastos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Infertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Ovário/anormalidades , Testículo/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA