Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Planta Med ; 90(6): 440-453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588695

RESUMO

Cancer is one of the biggest health concerns with a complex pathophysiology. Currently, available chemotherapeutic drugs are showing deleterious side effects, and tumors often show resistance to treatment. Hence, extensive research is required to develop new treatment strategies to fight against cancer. Natural resources from plants are at the forefront of hunting novel drugs to treat various types of cancers. Withaferin A (WA) is a naturally occurring withanolide, a biologically active component obtained from the plant Ashwagandha. Various in vitro and in vivo oncological studies have reported that Withaferin A (WA) has shown protection from cancer. WA shows its activity by inhibiting the growth and proliferation of malignant cells, apoptosis, and inhibiting angiogenesis, metastasis, and cancer stem cells (CSCs). In addition, WA also showed chemo- and radio-sensitizing properties. Besides the beneficiary pharmacological activities of WA, a few aspects like pharmacokinetic properties, safety, and toxicity studies are still lacking, hindering this potent natural product from entering clinical development. In this review, we have summarized the various pharmacological mechanisms shown by WA in in vitro and in vivo cancer studies and the challenges that must be overcome for this potential natural product's clinical translation to be effective.


Assuntos
Neoplasias , Vitanolídeos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38509343

RESUMO

Resveratrol is a polyphenolic compound showing anti-inflammatory activity by inhibition of high mobility group box 1 cytokine responsible for the activation of nuclear factor-κB pathway in atopic dermatitis. To evaluate the efficacy of resveratrol through topical route we have developed resveratrol-loaded nanoemulgel for the effective management of atopic dermatitis in mice model. The resveratrol-loaded nanoemulsion (0.5%, 0.75% and 1% w/w) was optimized by spontaneous nano-emulsification. The optimized resveratrol-loaded nanoemulsions showed average globule size in the 180-230 nm range and found to be monodispersed. The resveratrol nanoemulgel was prepared with a SEPINEO™ P 600 gel base and propylene glycol. Ex vivo permeation and retention study resulted in significantly higher skin retention of resveratrol from resveratrol-loaded nanoemulgel than free resveratrol-loaded gel. Preclinical efficacy of resveratrol nanoemulgel displayed promising therapeutic outcomes where, western blotting of skin tissues disclosed a significant reduction in the relative expression of high mobility group box 1, the receptor for advanced glycation end products, toll-like receptor-4 and phosphorylated nuclear factor-κB. Further, real-time polymerase chain reaction also disclosed a significant reduction in pro-inflammatory cytokines such as thymic stromal lymphopoietin, interleukin-4, interleukin-13, interleukin-31, tumor necrosis factor-α and interleukin-6. The histopathological examination of skin sections showed improvement in the skin condition. Collectively, the findings from our study showcased the significant improvement in the atopic dermatitis skin condition in mice model after topical application of resveratrol loaded nanoemulgel.

3.
J Complement Integr Med ; 21(1): 88-100, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916849

RESUMO

OBJECTIVES: Phragmenthera capitata (Spreng.) Balle and Globimetula braunii (Engler.) Van Tiegh are African mistletoe traditionally used in cancers treatment. Thus, the aim of the study was to assess the anti-melanoma potential of the methanol extract of Phragmenthera capitata (Spreng.) Balle (PCMe-OH) and Globimetula braunii (Engler.) (GBMe-OH) Van Tiegh. METHODS: Antioxidant potential was evaluated using DPPH, FRAP and hydroxyl assays. Total flavonoid and phenolic contents was also determined. MTT assay was used to estimate the effects on cell viability using SK-MLE28 and B16-F10 cell lines. Colony formation and wound healing were also assessed. Fluorometry methods were used for qualitative analysis of apoptosis and estimate ROS production. Western blot analysis was used for protein expression. RESULTS: Phragmenthera capitata (PCMe-OH) showed the highest antioxidant activity and possess the highest phenolic contents (1,490.80 ± 55 mgGAE/g extract) in comparison with G. braunii (GBMe-OH) and (1,071.40 ± 45 mgGAE/g extract). Flavonoid content was similar in both extracts (11.63 ± 5.51 mg CATE/g of extract and 12.46 ± 2.58 mg CATE/g of extract respectively). PC-MeOH showed the highest cytotoxicity effect (IC50 of 55.35 ± 1.17 µg/mL) and exhibited anti-migrative potential on B16-F10 cells. Furthermore, PC-MeOH at 55.35 and 110.7 µg/mL; promoted apoptosis-induced cell death in B16-F10 cells by increasing intracellular ROS levels and reducing Bcl-2 expression level at 110.7 µg/mL. Significant upregulation of P-PTEN expression was recorded with PC-MeOH at 110.7 µg/mL; inhibiting therefore PI3K/AKT/m-Tor signaling pathway. Moreover, at 55.37 µg/mL significant reduction of c-myc and cyclin D1 was observed; dysregulating the MAPK kinase signaling pathway and cell cycle progression. CONCLUSIONS: Phragmenthera capitata may be developed into selective chemotherapy to fight against melanoma.


Assuntos
Antioxidantes , Melanoma , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metanol , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/análise
4.
Int J Biol Macromol ; 258(Pt 1): 128821, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110163

RESUMO

Our main aim to design and develop a novel 4-carboxy phenyl boronic acid (4-CPBA) conjugated Palbociclib (PALB) loaded pH-sensitive chitosan lipid nanoparticles (PPCL) to enhance the anti-cancer efficacy of the PALB in in-vitro cell line studies by loading into 4-CPBA conjugated chitosan lipid nanoparticles. 4-CPBA was conjugated to chitosan by carbodiimide chemistry and formation of conjugate was confirmed by 1HNMR, ATR-FTIR spectroscopic techniques. Ionic-gelation method was used for the fabrication of PPCL and particles size, PDI, zeta potential were found to be 226.5 ± 4.3 nm, 0.271 ± 0.014 and 5.03 ± 0.42 mV. Presence of pH-sensitive biological macromolecule i.e. chitosan in the carrier system provides pH-sensitivity to PPCL and sustainedly released the drug upto 144 h. The PPCL exhibited approximately 7.2, 6.6, and 5-fold reduction in IC50 values than PALB in MCF-7, MDA-MB-231 and 4T1 cells. Receptor blocking assay concluded that the fabricated nanoparticles were internalized into MCF-7 cells might be through sialic acid-mediated endocytosis. PPCL caused extensive mitochondrial depolarization, enhanced ROS generation, apoptosis (DAPI nuclear staining, acridine orange/ ethidium bromide dual staining), and reduced % cell migration than pure PALB. It was concluded that the hybrid lipid-polymer nanoparticles provides an optimistic approach for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Lecitinas/química , Quitosana/química , Nanopartículas/química , Células MCF-7 , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Tamanho da Partícula
5.
J Nanobiotechnology ; 21(1): 260, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553670

RESUMO

Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.


Assuntos
Nanopartículas , Trombose , Dipiridamol/farmacologia , Nanopartículas/uso terapêutico , Selectina-P , Fototerapia/métodos , Polímeros , Pirróis , Trombose/tratamento farmacológico , Animais
6.
Bioorg Med Chem ; 90: 117297, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343499

RESUMO

Herein, regiospecific nucleophilic ring-opening of spiroaziridine oxindoles has been established to afford 3-substituted-thiooxindole derivatives as anticancer agents. Among the new series, compounds 7d and 9c exhibited promising cytotoxic activity toward HCT-116 cells with IC50 values of 6.73 ± 0.36 and 6.64 ± 0.95 µM, respectively. Further, AO/EB, DCFDA, and DAPI staining studies were executed to establish the underlying apoptosis mechanism which displayed significant nuclear and morphological alterations. JC-1 staining and annexin V binding assay inferred the loss of mitochondrial membrane potential in HCT-116 cancer cells. Cell cycle analysis showed the treatment of 9c against HCT-116 cells, arrested the cell cycle in G2-M phase. In addition, tubulin binding assay revealed that compound 9c exhibited tubulin polymerase inhibition with IC50 value of 9.73 ± 0.18 µM. This inhibition of tubulin polymerase was further supported by binding interactions of 9c with tubulin through docking studies on PDB ID: 3E22.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Relação Estrutura-Atividade , Polimerização , Tubulina (Proteína)/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/química , Apoptose , Moduladores de Tubulina/química , Linhagem Celular Tumoral
7.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188895, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037389

RESUMO

Cancer therapy continues to be a huge challenge as most chemotherapeutic agents exert serious adverse effects on healthy organs. Chemotherapeutic agents lack selective targeting and even the existing target specific therapies are failing due to poor distribution into the tumor microenvironment. Nanotechnology offers multiple advantages to address the limitations encountered by conventional therapy. However, the delivery of nanotherapeutics to tumor tissue has not improved over the years partly due to the poor and inadequate distribution of nanotherapeutics into deeper tumor regions resulting in resistance and relapse. To curb the penetration concerns, iRGD was explored and found to be highly effective in improving the delivery of cancer nanomedicine. The preclinical observations are highly encouraging; however, the clinical translation is at a nascent stage. Based on this, we have made an elaborative effort to give a detailed account of various promising applications of iRGD to increase anticancer and tumor imaging potential. Importantly, we have comprehensively discussed the shortcomings and uncertainties associated with the clinical translation of iRGD-based therapeutic approaches and future directions.


Assuntos
Neoplasias , Oligopeptídeos , Humanos , Linhagem Celular Tumoral , Peptídeos , Neoplasias/tratamento farmacológico
8.
Toxicol In Vitro ; 89: 105579, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36870549

RESUMO

Malignant melanoma is considered a deadly aggressive form of skin cancer that frequently metastasizes to various distal organs, which harbors mutations of the BRAF or NRAS which occur in 30 to 50% of melanoma patients. The growth factors secreted by melanoma cells contribute to tumor angiogenesis with the acquisition of metastatic potential by epithelial-mesenchymal transition (EMT) and drive melanoma growth toward a more aggressive form. Niclosamide (NCL) is an FDA-approved anthelmintic drug and is reported to have strong anti-cancer properties against various solid and liquid tumors. Its role in BRAF or NRAS mutated cells is unknown. In this context, we uncovered the role of NCL in impeding malignant metastatic melanoma in vitro in SK-MEL-2 and SK-MEL-28 cell lines. We found that NCL induces significant ROS generation and apoptosis through a series of molecular mechanisms, such as depolarization of mitochondrial membrane potential, arresting the cell cycle at the sub G1 phase with a significant increase in the DNA cleavage via topoisomerase II in both cell lines. We also found that NCL potently inhibited metastasis, which was examined by scratch wound assay, Additionally, we found that NCL inhibits the most important markers involved in the EMT signaling cascade that are stimulated by TGF-ß such as N-cadherin, Snail, Slug, Vimentin, α-SMA and p-Smad 2/3. This work provides useful insights into the mechanism of NCL in BRAF/NRAF mutant melanoma cells via inhibition of molecular signaling events involved in EMT signaling, and apoptosis induction.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Niclosamida/farmacologia , Transição Epitelial-Mesenquimal , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Apoptose , Linhagem Celular Tumoral , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
9.
RSC Med Chem ; 14(3): 549-562, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970141

RESUMO

In the pursuit of potential and effective chemotherapeutic agents, a series of 2-((3-(indol-3-yl)-pyrazol-5-yl)imino)thiazolidin-4-ones was designed and synthesized, conjoining salient pharmacophoric properties for directing prominent cytotoxicity. The in vitro cytotoxicity evaluation revealed potent compounds with IC50 values <10 µM on tested human cancer cell lines. Compound 6c exhibited the highest cytotoxicity with an IC50 value of 3.46 µM against melanoma cancer cells (SK-MEL-28) and was highly cytospecific and selective towards cancer cells. The traditional apoptosis assays revealed morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented/blebbing nuclei, and the generation of ROS. Flow cytometric analysis revealed effective early-stage apoptosis induction and cell-cycle arrest in the G2/M phase. In addition, the enzyme-based effect of 6c on tubulin showed the inhibition of tubulin polymerization (about 60% inhibition, IC50 was <1.73 µM). Moreover, molecular modeling studies affirmed the constant accommodation of compound 6c at the active pocket of tubulin, establishing many electrostatic and hydrophobic interactions with the active pocket's residues. The tubulin-6c complex was stable during the MD simulation for 50 ns with the recommended range of RMSD value (2-4 Å) for each pose.

10.
RSC Med Chem ; 14(3): 482-490, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970147

RESUMO

To scrutinize cis-stilbene based molecules with potential anticancer and tubulin polymerization inhibition activity, a new series of cis-stilbene-1,2,3-triazole congeners was designed and synthesized via a click chemistry protocol. The cytotoxicity of these compounds 9a-j and 10a-j was screened against lung, breast, skin and colorectal cancer cell lines. Based on the results of MTT assay, we further evaluated the selectivity index of the most active compound 9j (IC50 3.25 ± 1.04 µM on HCT-116) by comparing its IC50 value (72.24 ± 1.20 µM) to that of the normal human cell line. Further, to confirm apoptotic cell death, cell morphology and staining studies (AO/EB, DAPI and Annexin V/PI) were carried out. The outcomes of studies showed apoptotic features like change in cell shape, cornering of nuclei, micronuclei formation, fragmented, bright, horseshoe-shaped nuclei, etc. Moreover, active compound 9j displayed G2/M phase cell cycle arrest with significant tubulin polymerization inhibition activity with an IC50 value of 4.51 µM. Additionally, in silico ADMET, molecular docking and molecular dynamic studies of 9j with 3E22 protein proved the binding of the compound at the colchicine binding site of tubulin.

11.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807372

RESUMO

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Substâncias Intercalantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Apoptose , DNA , Simulação de Acoplamento Molecular , Polimerização
12.
Int Immunopharmacol ; 115: 109701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641892

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.


Assuntos
COVID-19 , Neoplasias Pulmonares , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Proteínas Nucleares/genética , Lipopolissacarídeos/farmacologia , Microambiente Tumoral , Síndrome da Liberação de Citocina , SARS-CoV-2 , Fatores de Transcrição/genética , Pulmão/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Pneumonia/induzido quimicamente , Inflamação , Proteínas de Ciclo Celular/genética
13.
ACS Biomater Sci Eng ; 9(2): 1030-1042, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36695711

RESUMO

Chronic pancreatitis (CP) is an inflammatory, irreversible disorder of the pancreas which leads to organ atrophy and poses high risk for the development of pancreatic cancer. Given the lack of clinically approved therapy, we explored the pharmacological potential of the nanoparticles of cerium oxide (nanoceria, NC) against animal models of CP. Nanoceria ameliorated the features of CP as evident from biochemical parameters. It inhibited the inflammatory cytokines and chemokines by abrogation of macrophage signaling. Further, NC attenuated the fibrogenesis by inhibition of TGF-ß signaling, endoplasmic reticulum stress, and epithelial-to-mesenchymal transition. Our findings reveal the anti-CP potential of the novel redox regenerative nanoceria against two models of CP.


Assuntos
Pancreatite Crônica , Animais , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/patologia , Pâncreas/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Fibrose
14.
Phytomedicine ; 108: 154510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332383

RESUMO

BACKGROUND: The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE: APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD: The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS: Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION: The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Produtos Biológicos/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
15.
AAPS PharmSciTech ; 24(1): 26, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550259

RESUMO

Essential oils consist of oxygenated structures of secondary metabolites of aromatic plants with anti-psoriatic activities. Tea tree oil (TTO) is an essential oil with good anti-microbial and anti-inflammatory properties, exhibiting reduced levels of IL-1, IL-8, and PGE 2. Thymoquinone (TMQ) is popular herb in traditional medicine with known therapeutic benefits in several diseases and ailments. The ternary phase diagram was prepared with the weight ratio of Smix (Tween® 80:Labrasol®): oil:water ratio for o/w emulsion preparation. The globule size was 16.54 ± 0.13 nm, and PDI around 0.22 ± 0.01 of the TTO-TMQ emulsion and found thermodynamically stable. The percentage drug content was found in the range of 98.97 ± 0.62 to 99.45 ± 0.17% with uniformity of the ThymoGel using Carbopol®. The extensive physicochemical properties were studied using different analytical techniques, and in vitro drug release was performed using Franz-diffusion apparatus. Anti-psoriatic activity of the formulations was studied using Imiquimod-induced psoriasis-like inflammation model in male Balb/c mice and parameters like PASI score, ear thickness, and spleen to body weight index were determined as well as histological staining, ELISA, skin compliance, and safety evaluation of TTO were performed. The combination of essential oils with TMQ shows synergistic activity and efficiently reduces the psoriasis disease condition.


Assuntos
Óleos Voláteis , Psoríase , Óleo de Melaleuca , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Emulsões/química , Pele/metabolismo , Psoríase/metabolismo
16.
Pharm Res ; 39(11): 2761-2780, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171346

RESUMO

PURPOSE: Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein's expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored. METHODS: The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer). RESULTS: Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells. CONCLUSION: The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.


Assuntos
Neoplasias Pulmonares , Micelas , Humanos , Linhagem Celular Tumoral , Polietilenoglicóis , Polímeros , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2 , Portadores de Fármacos , Vitamina E
17.
Eur J Med Chem ; 238: 114465, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635947

RESUMO

With the rising cancer incidence and mortality globally, there is a prerequisite for effective design strategies towards the discovery of newer small molecular entities in chemotherapy. Hence, a series of new thiazolidinone-based indolo-/pyrroloazepinone conjugates was designed, synthesized via molecular hybridization, and evaluated for their in vitro cytotoxicity potential and DNA topoisomerase I and II inhibition. Among this series, conjugate 11g emerged as the most active compound with an IC50 value of 1.24 µM against A549 and 3.02-10.91 µM in the other tested cancer cell lines. Gratifyingly, 11g displayed 43-fold higher selectivity towards A549 cancer cells as compared to the non-cancer cells. Subsequently, conjugate 12g also demonstrated significant cytotoxicity against SK-MEL-28 cells. Basing the in vitro cytotoxicity results, SAR was established. Later, the conjugates 11g and 12g were further evaluated for their apoptosis-inducing ability, which was quantified by flow cytometric analysis, DNA-binding, Topo I inhibitory activity and IC50 value calculation. Molecular modeling studies provided profound insights about the binding nature of these compounds with DNA-Topo I complex. In silico ADME/T and prediction studies corroborated the drug-likeness of the two investigated compounds. TOPKAT toxicity profiling studies demonstrated the compounds' safety in many animal models with a minimal toxicological profile. Encouraging results obtained from in vitro and in silico studies could put this series of conjugates at the forefront of cancer drug discovery.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Animais , Antineoplásicos/química , Azepinas , Linhagem Celular Tumoral , Proliferação de Células , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Pirróis , Relação Estrutura-Atividade , Tiazolidinas , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia
18.
Bioorg Chem ; 122: 105706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240414

RESUMO

A series of 17 indolo/pyrroloazepinone-oxindole conjugates was synthesized and evaluated for their antiproliferative activity against a panel of selected human cancer cell lines including A549 (lung cancer), HCT116 (colon cancer), MCF7 (breast cancer), and SK-MEL-28 (melanoma). Among the synthesized molecules (14a-m and 15a-d), compound 14d displayed remarkable activity against A549, HCT116 and SK-MEL-28 cells with IC50 values < 4 µM with the best cytotoxicity and a 13-fold selectivity towards lung cancer cells (IC50 value of 2.33 µM) over the normal rat kidney cells (NRK). Further, 14d-mediated apoptosis affected the cellular and nuclear morphology of the cancer cells in a dose-dependent manner. Wound healing and clonogenic assays inferred the inhibition of cell growth and migration. Target-based studies of compound 14d corroborated its DNA-intercalative capability and Topo I inhibitory activity which have been fortified by molecular modeling studies. Finally, the drug-likeness of the potent compound was determined by performing in silico ADME/T prediction studies.


Assuntos
Antineoplásicos , Animais , Apoptose , Azepinas , Linhagem Celular Tumoral , Proliferação de Células , DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis/farmacologia , Pirróis , Ratos , Relação Estrutura-Atividade
19.
Life Sci ; 295: 120372, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143824

RESUMO

Prolonged exposure to the pharmacological doses of disease-modifying anti-rheumatic drugs (DMARDs) often results in major organ toxicities resulting in poor patient compliance. Methotrexate (MTX) is one of the commonly prescribed DMARDs for the treatment of arthritis, which results in vital organ dysfunction. To retain the anti-arthritic activity of MTX with the reduction in toxicities, combination therapies are warranted. Nimbolide (NMB) is a potent anticancer, anti-inflammatory and anti-fibrotic agent whose potential has been demonstrated in various pre-clinical models. Monoarthritis was developed with Complete Freund's Adjuvant in the knees of Wistar rats and treatment was given with either NMB (3 mg/kg/day) or MTX (2 mg/kg/week) alone or combination therapy (NMB + MTX). The anti-arthritic effects were evaluated by arthritic scoring, radiological imaging, synovial tissue proteins analysis, and histopathological staining. While hepato-renal toxicity was assessed in serum by evaluating the kidney and liver functional parameters, in tissues by oxidative-nitrosative stress markers, and pro-inflammatory cytokines levels. Histopathological analysis was performed to study the extent of tissue damage. Molecular studies like immunoblotting and immunohistochemistry were performed to understand the effect of combination therapy. We thereby report that monotherapy with either NMB or MTX exhibited significant anti-arthritic effects, while combination therapy resulted in augmented anti-arthritic effects with significant reduction in hepato-renal toxicity produced by MTX probably through anti-inflammatory and anti-oxidant effects. Therefore, our proposed combination of NMB and MTX may serve as a potential strategy for the effective management of arthritis.


Assuntos
Artrite/tratamento farmacológico , Limoninas/farmacologia , Metotrexato/farmacologia , Animais , Antioxidantes/farmacologia , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Quimioterapia Combinada/métodos , Feminino , Adjuvante de Freund/farmacologia , Limoninas/metabolismo , Fígado/metabolismo , Metotrexato/toxicidade , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
20.
Life Sci ; 292: 120321, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031259

RESUMO

Triple-negative breast cancer (TNBC) is a particularly lethal subtype of breast cancer owing to its heterogeneity, high drug resistance, poor prognosis and lack of therapeutic targets. Recent insights into the complexity of TNBC have been explained by epigenetic regulation and its ability to modulate certain oncogenes and tumour suppressor genes. This has opened an emerging area in anti-cancer therapy using epigenetic modulating drugs, highlighting the epigenetic reprogramming during tumorigenesis and tumour development. Histone methylation and demethylation are such dynamic epigenetic mechanisms mediated by histone methyltransferases (HMTs) and histone demethylases (HDMs), respectively. The interplay between HMTs and HDMs in histone methylation extrapolates their viability as druggable epigenetic targets in TNBC. In this review, we aim to summarize recent progress in the field of epigenetics focusing on HMTs and HDMs in TNBC development and their potential use in targeted therapy for TNBC management.


Assuntos
Histona Desmetilases/fisiologia , Histona Metiltransferases/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA