Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792024

RESUMO

The journal retracts the article, "Anti-Cancer Activities of Thyrointegrin αvß3 Antagonist Mono- and Bis-Triazole Tetraiodothyroacetic Acid Conjugated via Polyethylene Glycols in Glioblastoma" [...].

2.
Neurooncol Adv ; 5(1): vdac180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36879662

RESUMO

Background: Thyrointegrin αvß3 receptors are unique molecular cancer therapeutic targets because of their overexpression on cancer and rapidly dividing blood vessel cells compared and quiescent on normal cells. A macromolecule, TriAzole Tetraiodothyroacetic acid (TAT) conjugated to polyethylene glycol with a lipophilic 4-fluorobenyl group (fb-PMT and NP751), interacts with high affinity (0.21 nM) and specificity with the thyrointegrin αvß3 receptors on the cell surface without nuclear translocation in contrast to the non-polymer conjugated TAT. Methods: The following in vitro assays were carried out to evaluate NP751 including binding affinity to different integrins, transthyretin (TTR)-binding affinity, glioblastoma multiforme (GBM) cell adhesion, proliferation assays, nuclear translocations, chorioallantoic membrane model of angiogenesis, and microarray for molecular mechanisms. Additionally, in vivo studies were carried out to evaluate the anticancer efficacy of NP751, its biodistribution, and brain GBM tumor versus plasma levels kinetics. Results: NP751 demonstrated a broad spectrum of antiangiogenesis and anticancer efficacy in experimental models of angiogenesis and xenografts of human GBM cells. Tumor growth and cancer cells' viability were markedly decreased (by > 90%; P < .001) in fb-PMT-treated U87-luc or 3 different primary human GBM xenograft-bearing mice based on tumor in vivo imaging system (IVIS) imaging and histopathological examination, without relapse upon treatment discontinuation. Additionally, it effectively transports across the blood-brain barrier via its high-affinity binding to plasma TTR with high retention in brain tumors. NP751-induced effects on gene expression support the model of molecular interference at multiple key pathways essential for GBM tumor progression and vascularization. Conclusions: fb-PMT is a potent thyrointegrin αvß3 antagonist with potential impact on GBM tumor progression.

4.
Front Pharmacol ; 13: 902141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518666

RESUMO

We have recently reported on the development of fb-PMT (NP751), a conjugate of the thyroid hormone metabolite tetraiodothyroacetic acid (tetrac) and monodisperse polyethylene glycol 36. It exhibited high affinity for thyrointegrin αvß3 receptor and potent anti-angiogenic and anticancer activity in vivo. The objective of the current study is to determine the pharmacokinetics (PK) of fb-PMT in experimental animals, such as mice, rats, and monkeys. NP751 was quantified using a propylene diamine-modified tetraiodothyroacetic acid (DAT) as an internal standard. The limit of quantification (LOQ) for fb-PMT was 1.5 ng/µL and the recovery efficiency was 93.9% with the developed method. The peak plasma concentration (Cmax) and the area under the curve (AUC) results at different doses in mice, rats and monkeys suggest that pharmacokinetics of NP751 is dose-dependent within the dose ranges administered. Results indicate that NP751 has comparable PK parameters that provides enough exposure as a molecularly tumor targeted molecule in multiple species and is a promising anticancer therapeutic.

7.
Front Pharmacol ; 13: 936996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847018

RESUMO

Cancer can develop due to abnormal cell proliferation in any body's cells, so there are over a hundred different types of cancer, each with its distinct behavior and response to treatment. Therefore, many studies have been conducted to slow cancer progression and find effective and safe therapies. Nutraceuticals have great attention for their anticancer potential. Therefore, the current study was conducted to investigate the anticancer effects of curcumin (Cur), thymoquinone (TQ), and 3, 3'-diindolylmethane (DIM) combinations on lung (A549) and liver (HepG2) cancer cell lines' progression. Results showed that triple (Cur + TQ + DIM) and double (Cur + TQ, Cur + DIM, and TQ + DIM) combinations of Cur, TQ, and DIM significantly increased apoptosis with elevation of caspase-3 protein levels. Also, these combinations exhibited significantly decreased cell proliferation, migration, colony formation activities, phosphatidylinositol 3-kinase (PI3K), and protein kinase B (AKT) protein levels with S phase reduction. Triple and double combinations of Cur, TQ, and DIM hindered tumor weight and angiogenesis of A549 and HepG2 implants in the chorioallantoic membrane model. Interestingly, Cur, TQ, and DIM combinations are considered promising for suppressing cancer progression via inhibiting tumor angiogenesis. Further preclinical and clinical investigations are warranted.

8.
J Pharm Pharmacol Res ; 6(2): 80-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903625

RESUMO

Catechin polyphenols are the major bioactive ingredients in green tea with various human health benefits. Extraction of catechins from green tea (GTE) leaves at optimized standard conditions is still a challenging approach. An optimized, rapid, and economic extraction method is industrially needed. We hypothesized that certain extraction techniques in the presence of natural polymers and antioxidants might improve GTE catechin extraction yield and its biological activity. The effect of microwave (30-60 seconds irradiation in a typical kitchen microwave) assisted extraction (MAE) and ultrasonic assisted extraction (UAE) techniques were evaluated separately and in combination. To study the effect of the extraction solvent, nine edible green solvent combinations were investigated namely water, ascorbic acid, chitosan/ascorbic acid, carboxymethylcellulose /ascorbic acid, methylcellulose /ascorbic acid, chitosan/methylcellulose/ascorbic acid, methylcellulose, chitosan/acetic acid, and ethanol. The amounts of extracted catechins from green tea leaves were quantified with HPLC-UV. Data showed that the use of MAE & UAE technique was the optimal in producing a higher extraction yield of catechins. Chitosan/ascorbic acid was the optimized solvent with high extraction efficiencies of catechins. Studies in high fat diet fed animals demonstrated significant reduction of total cholesterol and LDL-C by GTE after 3 weeks of oral daily administration. In conclusion, efficient extraction, and stabilization of catechins from green tea leaves demonstrated a significant lowering of high fat diet-mediated elevation in blood cholesterol and LDL-C levels.

9.
J Cancer ; 13(8): 2594-2606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711848

RESUMO

Background: In neuroendocrine tumors, the norepinephrine transporter (NET) is very active and has been exploited for diagnostic imaging purposes and/or therapy with localized radiotherapy. Integrin αvß3 is generously expressed by and/or activated on cancer cells, but not by nonmalignant cells. Purpose: In the present investigation, the anticancer efficacy of the dual targeting of norepinephrine transporter (NET), benzylguanidine (BG), and thyrointegrin αvß3 receptors antagonist triazole tetraiodothyroacetic acid (TAT) conjugated via the non-cleavable linker polyethylene glycol (P, PEG400) in the treatment of human neuroblastoma was evaluated. Experimental approach: The synthesized dual targeting compound, a novel new chemical entity named BG-P400-TAT, has purity > 98% and was formulated and tested in neuroblastoma models using neuroblastoma cell lines (SK-N-FI, SMS-KCN and SMS-KANR) implanted in SCID and NSG mice models. Key Results: BG-P400-TAT demonstrated significant (**P<0.01, ***P< 0.001) suppression of neuroblastoma tumor progression, growth, and viability in both mice models implanted with the neuroblastoma. The pharmacokinetic and biodistribution profile of BG-P400-TAT showed a significant increase in BG-P400-TAT levels in plasma and xenografts of NSG compared to SCID mice. Further our RNAseq genome-wide expression profiling experiments in neuroblastoma cell line SKNAS results showed that BG-P400-TAT treatment altered the signal transduction pathways, intracellular multiprotein complexes and Independent GSEA. Conclusion & Implications: BG-P400-TAT represents a potential lead candidate for the treatment of neuroblastoma and other neuroendocrine tumors.

10.
Biomedicines ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453545

RESUMO

Thyroid hormone L thyroxine stimulates pancreatic carcinoma cell proliferation via thyrointegrin αvß3 receptors, and antagonist tetraiodothyroacetic acid (tetrac) inhibits cancer cell growth. Chemically modified bis-triazole-tetrac conjugated with polyethylene glycol (P-bi-TAT) has higher binding affinity to αvß3 receptors compared to tetrac. We investigated the antiproliferation effect of P-bi-TAT in pancreatic cancer cells (SUIT2) and its radio- and chemo-sensitizing roles in a mouse model of pancreatic cancer. P-bi-TAT treatment increased tumor-targeted radiation-induced cell death and decreased tumor size. P-bi-TAT acted as a chemo-sensitizer and enhanced the 5-fluorouracil (5FU) effect in decreasing pancreatic tumor weight compared to 5FU monotherapy. Withdrawal of treatment continued the tumor regression; however, the 5FU group showed tumor regrowth. The mechanisms of the anti-cancer activity of P-bi-TAT on SUIT2 cells were assessed by microarray experiments, and genome-wide profiling identified significant alterations of 1348 genes' expression. Both down-regulated and up-regulated transcripts suggest that a molecular interference at the signaling pathway-associated gene expression is the prevalent mode of P-bi-TAT anti-cancer activity. Our data indicate that non-cytotoxic P-bi-TAT is not only an anti-cancer agent but also a radio-sensitizer and chemo-sensitizer that acts on the extracellular domain of the cell surface αvß3 receptor.

11.
Metabolites ; 12(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35448512

RESUMO

Chemically modified forms of tetraiodothyroacetic acid (tetrac), an L-thyroxine derivative, have been shown to exert their anticancer activity at plasma membrane integrin αvß3 of tumor cells. Via a specific hormone receptor on the integrin, tetrac-based therapeutic agents modulate expression of genes relevant to cancer cell proliferation, survival and energy metabolism. P-bi-TAT, a novel bivalent tetrac-containing synthetic compound has anticancer activity in vitro and in vivo against glioblastoma multiforme (GBM) and other types of human cancers. In the current study, microarray analysis was carried out on a primary culture of human GBM cells exposed to P-bi-TAT (10-6 tetrac equivalent) for 24 h. P-bi-TAT significantly affected expression of a large panel of genes implicated in cancer cell stemness, growth, survival and angiogenesis. Recent interest elsewhere in ATP synthase as a target in GBM cells caused us to focus attention on expression of genes involved in energy metabolism. Significantly downregulated transcripts included multiple energy-metabolism-related genes: electron transport chain genes ATP5A1 (ATP synthase 1), ATP51, ATP5G2, COX6B1 (cytochrome c oxidase subunit 6B1), NDUFA8 (NADH dehydrogenase (ubiquinone) FA8), NDUFV2I and other NDUF genes. The NDUF and ATP genes are also relevant to control of oxidative phosphorylation and transcription. Qualitatively similar actions of P-bi-TAT on expression of subsets of energy-metabolism-linked genes were also detected in established human GBM and pancreatic cancer cell lines. In conclusion, acting at αvß3 integrin, P-bi-TAT caused downregulation in human cancer cells of expression of a large number of genes involved in electron transport and oxidative phosphorylation. These observations suggest that cell surface thyroid hormone receptors on αvß3 regulate expression of genes relevant to tumor cell stemness and energy metabolism.

12.
Front Endocrinol (Lausanne) ; 13: 745327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311239

RESUMO

Apoptosis is induced in cancer cells and tumor xenografts by the thyroid hormone analogue tetraiodothyroacetic acid (tetrac) or chemically modified forms of tetrac. The effect is initiated at a hormone receptor on the extracellular domain of plasma membrane integrin αvß3. The tumor response to tetrac includes 80% reduction in size of glioblastoma xenograft in two weeks of treatment, with absence of residual apoptotic cancer cell debris; this is consistent with efferocytosis. The molecular basis for efferocytosis linked to tetrac is incompletely understood, but several factors are proposed to play roles. Tetrac-based anticancer agents are pro-apoptotic by multiple intrinsic and extrinsic pathways and differential effects on specific gene expression, e.g., downregulation of the X-linked inhibitor of apoptosis (XIAP) gene and upregulation of pro-apoptotic chemokine gene, CXCL10. Tetrac also enhances transcription of chemokine CXCR4, which is relevant to macrophage function. Tetrac may locally control the conformation of phagocyte plasma membrane integrin αvß3; this is a cell surface recognition system for apoptotic debris that contains phagocytosis signals. How tetrac may facilitate the catabolism of the engulfed apoptotic cell debris requires additional investigation.


Assuntos
Integrina alfaVbeta3 , Neoplasias , Xenoenxertos , Humanos , Integrina alfaVbeta3/metabolismo , Fagocitose , Hormônios Tireóideos/metabolismo , Tiroxina/análogos & derivados
13.
Nanomedicine (Lond) ; 16(26): 2331-2342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34651508

RESUMO

Aim: We previously synthesized a polyethylene glycol-based norepinephrine transporter-targeted agent, BG-P-TAT, which has a benzylguanidine and a triazolyl-tetrac group. This targeted conjugate showed suppression of neuroblastoma tumor progression. In this study we aimed to synthesize nanoparticles to encapsulate the chemotherapeutic agent paclitaxel for targeting neuroblastoma tumors by using benzylguanidine so that it can compete with norepinephrine for uptake by neuroendocrine cells. Methods: Biocompatible poly(lactide-co-glycolic acid)-polyethylene glycol was chosen to prepare targeted nanoparticles for safe delivery of the chemotherapy agent paclitaxel. Result: Paclitaxel concentration was 60% higher in neuroblastoma tumors of mice treated with paclitaxel encapsulated in targeted nanoparticles than with non-targeted nanoparticles. Conclusion: These findings support the targeted delivery of paclitaxel as a chemotherapeutic agent for neuroblastoma.


Assuntos
Nanopartículas , Neuroblastoma , Paclitaxel , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Guanidinas , Camundongos , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Polietilenoglicóis
14.
Integr Cancer Ther ; 20: 15347354211035450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490824

RESUMO

Doxorubicin (Dox) induces senescence in numerous cancer cell types, but these senescent cancer cells relapse again if they are not eliminated. On this principle, we investigated the apoptotic effect of thymoquinone (TQ), the active ingredient of Nigella sativa seeds and costunolide (COS), the active ingredient of Costus speciosus, on the senescent colon (Sen-HCT116) and senescent breast (Sen-MCF7) cancer cell lines in reference to their corresponding proliferative cells to rapidly eliminate the senescent cancer cells. The senescence markers of Sen-HCT116 and Sen-MCF7 were determined by a significant decrease in bromodeoxyuridine (BrdU) incorporation and significant increases in SA-ß-gal, p53, and p21 levels. Then proliferative, Sen-HCT116, and Sen-MCF7 cells were subjected to either TQ (50 µM) or COS (30 µM), the Bcl2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2), caspase 3 mRNA expression and its activity were established. Results revealed that TQ significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ, MCF7 + TQ, and MCF7 + Dox5 + TQ compared with their corresponding controls. COS significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ and MCF7 + Dox5 + TQ compared with their related controls. Also, TQ and COS were significantly increased caspase 3 activity and cell proliferation of Sen-HCT116 and Sen-MCF7. The data revealed a higher sensitivity of senescent cells to TQ or COS than their corresponding proliferative cells.


Assuntos
Apoptose , Recidiva Local de Neoplasia , Benzoquinonas , Colo , Doxorrubicina/farmacologia , Humanos , Sesquiterpenos
15.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439224

RESUMO

(1) Background: Acute myeloid leukemia (AML) accounts for up to one-third of more than 60,000 leukemia cases diagnosed annually in the U.S. Primary AML cells express membrane αvß3 integrin, which is associated with adverse prognosis and resistance to chemotherapies. A novel anticancer compound Polyethylene glycol-conjugated bi-TriAzole Tetraiodothyroacetic acid (P-bi-TAT) interacts with high affinity (Ki 0.3 nM) and specificity with the thyrointegrin αvß3. We evaluated P-bi-TAT activities in two different AML models representing monocytic and myelocytic forms of acute leukemia. (2) Methods and Results: The in vivo AML models were established prior to initiation of treatment protocols by grafting human leukemia cells in immunocompromised mice. IVIS imaging scans revealed that leukemic colonies were extensively established throughout the bone marrow, liver, and lung of the untreated animals. In animals treated with P-bi-TAT at daily doses ranging from 1-10 mg/kg, subcutaneously for 2-3 weeks, IVIS imaging scans revealed 95% reduction in bone marrow colonies and leukemic colonies in liver and lung. Also, the leukemic cells were not detected in bone marrow samples of P-bi-TAT-treated animals. The anti-neoplastic effect of P-bi-TAT administration on leukemic cells was associated with marked inhibition of NF-κB activity. We conclude that experimental P-bi-TAT therapy in vivo appears extraordinarily effective against the two forms of human AML models in mice. Because the P-bi-TAT molecular target, thyrointegrin αvß3, is consistently expressed in many, if not all, clinical AML samples, P-bi-TAT-based therapy seems to have significant clinical potential in treating most AML sub-types. Hence, P-bi-TAT represents a promising targeted therapeutic agent for AML patients.

16.
Biomedicines ; 9(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440193

RESUMO

Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX's cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.

17.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204997

RESUMO

Integrin αvß3 receptors are overexpressed in different tumors and their associated neovascularization and hence, represent a potential cancer target. We previously synthesized a high affinity thyrointegrin αvß3, P4000-bi-TAT (tetrac derivative), with potent anticancer properties. However, the long polydisperse PEG conjugate showed large scaleup and analytical/bioanalytical issues. Hence, in the present study, we synthesized a mono versus bi-triazole tetrac with discrete monodisperse PEG, which provided improvement in scaleup and bioanalysis. In the present study, we compared binding affinity and anticancer activates with a smaller PEG size (P1600-bi-TAT, Compound 2) and the removal of one TAT molecule (P1600-m-TAT, Compound 3) versus P4000-bi-TAT, Compound 1. The results of the selectivity and affinity of TATs showed greater affinity to integrin αvß3. The xenograft weights and tumor cell viabilities were decreased by >90% at all doses compared to the control (ON Treatment, *** p < 0.001) in cells treated with Compounds 1, 2, and 3 in U87-Luc-treated mice. The in vivo luminescent signals of U87-luc cells reflect the proliferation and distribution of tumor cells in the animals and the maximum intensity corresponding to the maximum tumor cells that the animals could tolerate. We found that the three thyrointegrin αvß3 antagonists exhibited optimal therapeutic efficacy against U87 or primary glioblastoma cells. Biological studies showed that decreasing the PEG linker size (1600 vs. 4000) or having mono-TAT or bi-TAT had no significant impact on their αvß3 binding affinity, anti-angiogenesis, or overall anti-cancer efficacy.

18.
Nanomedicine (Lond) ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132104

RESUMO

Aim: To investigate the anti-cancer potential of thymoquinone (TQ) and TQ nanoparticles (TQ-NPs) and their protection against doxorubicin (DOX)-induced cardiotoxicity. Methods: TQ-NPs were prepared by double emulsion method and characterized. The efficacy of TQ and TQ-DOX was studied against HCT116 and MDA-MB-231-Luc cancer cell lines in vitro and in a xenograft tumor model. Results: TQ and TQ + DOX increased Bax levels in HCT116 cells and decreased Bcl2 levels in MDA-MB-231-Luc cells. In the xenograft model, the TQ-NPs, with an average size of 218 nm, in combination with DOX, significantly reduced tumor size. The combination of TQ or TQ-NPs with DOX significantly reduced DOX-induced cardiotoxicity. Conclusion: Data suggest the promising role of TQ and TQ-NPs alone and with DOX for anti-cancer and cardiac protection benefits.

19.
Bioorg Med Chem ; 42: 116250, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118788

RESUMO

Receptor-mediated cancer therapy has received much attention in the last few decades. Neuroblastoma and other cancers of the sympathetic nervous system highly express norepinephrine transporter (NET) and cell plasma membrane integrin αvß3. Dual targeting of the NET and integrin αvß3 receptors using a Drug-Drug Conjugate (DDC) might provide effective treatment strategy in the fight against neuroblastoma and other neuroendocrine tumors. In this work, we synthesized three dual-targeting BG-P400-TAT derivatives, dI-BG-P400-TAT, dM-BG-P400-TAT, and BG-P400-PAT containing di-iodobenzene, di-methoxybenzene, and piperazine groups, respectively. These derivatives utilize to norepinephrine transporter (NET) and the integrin αvß3 receptor to simultaneously modulate both targets based on evaluation in a neuroblastoma animal model using the neuroblastoma SK-N-F1 cell line. Among the three synthesized agents, the piperazine substituted BG-P400-PAT exhibited potent integrin αvß3 antagonism and reduced neuroblastoma tumor growth and cancer cell viability by >90%. In conclusion, BG-P400-PAT and derivatives represent a potential therapeutic approach in the management of neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Tiroxina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Relação Estrutura-Atividade , Tiroxina/análogos & derivados , Tiroxina/química , Células Tumorais Cultivadas
20.
Bioorg Med Chem ; 43: 116278, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34157571

RESUMO

Polymer-drug conjugates are growing in interest as novel anticancer agents for targeted cancer therapy. The aim of this study was to synthesize a poly(ethylene glycol) (PEG) conjugated anticancer drug for neuroblastoma, which is the most common extracranial solid tumor of childhood and the deadliest tumor of infancy. In our previous studies, we designed and synthesized a dual targeting agent using benzylguanidine (BG) conjugated with the high affinity thyrointegrin αvß3 antagonist TriAzole Tetraiodothyroacetic acid (TAT) via non-cleavable bonding to PEG400 to make BG-P400-TAT and its derivatives as agents against neuroblastoma. Here, we improved the pharmacodynamic properties and increased the solubility by changing the polymer length to 1600 molecular weight. The TAT group, which acts as an integrin αvß3 antagonist, and the BG group, which can be taken up by neuroblastoma cells through the norepinephrine transporter (NET) system, are conjugated to PEG1600 to make BG-PEG1600-TAT. The binding affinity of BG-PEG1600-TAT was 40-fold higher to integrin αvß3 versus BG-P400-TAT and was associated with greater anticancer activities against neuroblastoma cells (SK-N-F1 and SKNAS) implanted in SCID mice along with broad spectrum anti-angiogenesis activities versus the FDA approved anti-Vascular Endothelial Growth Factor (VEGF) monoclonal antibody Avastin (bevacizumab). In conclusion, our novel dual targeting of NET and αvß3 receptor antagonist, BG-P1600-TAT demonstrated broad spectrum anti-angiogenesis and anti-cancer activities in suppressing neuroblastoma tumor progression and metastasis. Thus, BG-PEG1600-TAT represents a potential clinical candidate for targeted therapy in neuroblastoma management.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Integrina alfaVbeta3/metabolismo , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Polietilenoglicóis/farmacologia , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Integrina alfaVbeta3/química , Estrutura Molecular , Neuroblastoma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Polietilenoglicóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA