Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711578

RESUMO

The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.

2.
Aging Cell ; 21(2): e13539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35088525

RESUMO

Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria and may have evolved to protect cells against the production of damaging reactive oxygen species. Therefore, compounds that enhance mitochondrial uncoupling are potentially attractive anti-aging therapies; however, chronic ingestion is associated with a number of unwanted side effects. We have previously developed a controlled-release mitochondrial protonophore (CRMP) that is functionally liver-directed and promotes oxidation of hepatic triglycerides by causing a subtle sustained increase in hepatic mitochondrial inefficiency. Here, we sought to leverage the higher therapeutic index of CRMP to test whether mild mitochondrial uncoupling in a liver-directed fashion could reduce oxidative damage and improve age-related metabolic disease and lifespan in diet-induced obese mice. Oral administration of CRMP (20 mg/[kg-day] × 4 weeks) reduced hepatic lipid content, protein kinase C epsilon activation, and hepatic insulin resistance in aged (74-week-old) high-fat diet (HFD)-fed C57BL/6J male mice, independently of changes in body weight, whole-body energy expenditure, food intake, or markers of hepatic mitochondrial biogenesis. CRMP treatment was also associated with a significant reduction in hepatic lipid peroxidation, protein carbonylation, and inflammation. Importantly, long-term (49 weeks) hepatic mitochondrial uncoupling initiated late in life (94-104 weeks), in conjugation with HFD feeding, protected mice against neoplastic disorders, including hepatocellular carcinoma (HCC), in a strain and sex-specific manner. Taken together, these studies illustrate the complex variation of aging and provide important proof-of-concept data to support further studies investigating the use of liver-directed mitochondrial uncouplers to promote healthy aging in humans.


Assuntos
Carcinoma Hepatocelular , Resistência à Insulina , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
3.
Nat Commun ; 12(1): 6448, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750386

RESUMO

Intricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


Assuntos
Colesterol/metabolismo , Retroalimentação Fisiológica , Homeostase , Fígado/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular Tumoral , LDL-Colesterol/metabolismo , Perfilação da Expressão Gênica/métodos , Células HeLa , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
4.
Mol Metab ; 46: 101178, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545391

RESUMO

BACKGROUND: Mitochondrial uncouplers shuttle protons across the inner mitochondrial membrane via a pathway that is independent of adenosine triphosphate (ATP) synthase, thereby uncoupling nutrient oxidation from ATP production and dissipating the proton gradient as heat. While initial toxicity concerns hindered their therapeutic development in the early 1930s, there has been increased interest in exploring the therapeutic potential of mitochondrial uncouplers for the treatment of metabolic diseases. SCOPE OF REVIEW: In this review, we cover recent advances in the mechanisms by which mitochondrial uncouplers regulate biological processes and disease, with a particular focus on metabolic associated fatty liver disease (MAFLD), nonalcoholic hepatosteatosis (NASH), insulin resistance, and type 2 diabetes (T2D). We also discuss the challenges that remain to be addressed before synthetic and natural mitochondrial uncouplers can successfully enter the clinic. MAJOR CONCLUSIONS: Rodent and non-human primate studies suggest that a myriad of small molecule mitochondrial uncouplers can safely reverse MAFLD/NASH with a wide therapeutic index. Despite this, further characterization of the tissue- and cell-specific effects of mitochondrial uncouplers is needed. We propose targeting the dosing of mitochondrial uncouplers to specific tissues such as the liver and/or developing molecules with self-limiting properties to induce a subtle and sustained increase in mitochondrial inefficiency, thereby avoiding systemic toxicity concerns.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/terapia , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Produtos Biológicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos , Humanos , Resistência à Insulina , Fígado/metabolismo , Cirrose Hepática , Síndrome Metabólica , Oxirredução
5.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212990

RESUMO

Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.


Assuntos
Hepatócitos/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Linhagem Celular , Hepatócitos/citologia , Humanos , Insulina/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor de Insulina/genética
6.
Mol Cell Biol ; 39(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501273

RESUMO

Brain insulin resistance is a key pathological feature contributing to obesity, diabetes, and neurodegenerative disorders, including Alzheimer's disease (AD). Besides the classic transcriptional mechanism mediated by hormones, posttranscriptional regulation has recently been shown to regulate a number of signaling pathways that could lead to metabolic diseases. Here, we show that microRNA 7 (miR-7), an abundant microRNA in the brain, targets insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and insulin-degrading enzyme (IDE), key regulators of insulin homeostatic functions in the central nervous system (CNS) and the pathology of AD. In this study, we found that insulin and liver X receptor (LXR) activators promote the expression of the intronic miR-7-1 in vitro and in vivo, along with its host heterogeneous nuclear ribonucleoprotein K (HNRNPK) gene, encoding an RNA binding protein (RBP) that is involved in insulin action at the posttranscriptional level. Our data show that miR-7 expression is altered in the brains of diet-induced obese mice. Moreover, we found that the levels of miR-7 are also elevated in brains of AD patients; this inversely correlates with the expression of its target genes IRS-2 and IDE. Furthermore, overexpression of miR-7 increased the levels of extracellular Aß in neuronal cells and impaired the clearance of extracellular Aß by microglial cells. Taken together, these results represent a novel branch of insulin action through the HNRNPK-miR-7 axis and highlight the possible implication of these posttranscriptional regulators in a range of diseases underlying metabolic dysregulation in the brain, from diabetes to Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Receptores X do Fígado/metabolismo , MicroRNAs/metabolismo , Receptor de Insulina/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Insulina/genética , Resistência à Insulina , Insulisina/metabolismo , Receptores X do Fígado/genética , Camundongos , MicroRNAs/genética , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , Receptor de Insulina/genética , Transdução de Sinais
7.
Diabetologia ; 61(6): 1435-1446, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29497783

RESUMO

AIMS/HYPOTHESIS: Targeting regulators of adipose tissue lipoprotein lipase could enhance adipose lipid clearance, prevent ectopic lipid accumulation and consequently ameliorate insulin resistance and type 2 diabetes. Angiopoietin-like 8 (ANGPTL8) is an insulin-regulated lipoprotein lipase inhibitor strongly expressed in murine adipose tissue. However, Angptl8 knockout mice do not have improved insulin resistance. We hypothesised that pharmacological inhibition, using a second-generation antisense oligonucleotide (ASO) against Angptl8 in adult high-fat-fed rodents, would prevent ectopic lipid accumulation and insulin resistance by promoting adipose lipid uptake. METHODS: ANGPTL8 expression was assessed by quantitative PCR in omental adipose tissue of bariatric surgery patients. High-fat-fed Sprague Dawley rats and C57BL/6 mice were treated with ASO against Angptl8 and insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamps in rats and glucose tolerance tests in mice. Factors mediating lipid-induced hepatic insulin resistance were assessed, including lipid content, protein kinase Cε (PKCε) activation and insulin-stimulated Akt phosphorylation. Rat adipose lipid uptake was assessed by mixed meal tolerance tests. Murine energy balance was assessed by indirect calorimetry. RESULTS: Omental fat ANGPTL8 mRNA expression is higher in obese individuals with fatty liver and insulin resistance compared with BMI-matched insulin-sensitive individuals. Angptl8 ASO prevented hepatic steatosis, PKCε activation and hepatic insulin resistance in high-fat-fed rats. Postprandial triacylglycerol uptake in white adipose tissue was increased in Angptl8 ASO-treated rats. Angptl8 ASO protected high-fat-fed mice from glucose intolerance. Although there was no change in net energy balance, Angptl8 ASO increased fat mass in high-fat-fed mice. CONCLUSIONS/INTERPRETATION: Disinhibition of adipose tissue lipoprotein lipase is a novel therapeutic modality to enhance adipose lipid uptake and treat non-alcoholic fatty liver disease and insulin resistance. In line with this, adipose ANGPTL8 is a candidate therapeutic target for these conditions.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oligonucleotídeos Antissenso/genética , Hormônios Peptídicos/genética , Proteína 8 Semelhante a Angiopoietina , Animais , Composição Corporal , Calorimetria Indireta , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
8.
Atherosclerosis ; 243(2): 499-509, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26520906

RESUMO

RATIONALE: Recently, there has been significant interest in the therapeutic administration of miRNA mimics and inhibitors to treat cardiovascular disease. In particular, miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism and potential therapeutic target for treating atherosclerosis. Despite this, the impact of miR-27b on lipid levels in vivo remains to be determined. As such, here we set out to further characterize the role of miR-27b in regulating cholesterol metabolism in vitro and to determine the effect of miR-27b overexpression and inhibition on circulating and hepatic lipids in mice. METHODS AND RESULTS: Our results identify miR-27b as an important regulator of LDLR activity in human and mouse hepatic cells through direct targeting of LDLR and LDLRAP1. In addition, we report that modulation of miR-27b expression affects ABCA1 protein levels and cellular cholesterol efflux to ApoA1 in human hepatic Huh7 cells. Overexpression of pre-miR-27b in the livers of wild-type mice using AAV8 vectors increased pre-miR-27b levels 50-fold and reduced hepatic ABCA1 and LDLR expression by 50% and 20%, respectively, without changing circulating and hepatic cholesterol and triglycerides. To determine the effect of endogenous miR-27b on circulating lipids, wild-type mice were fed a Western diet for one month and injected with 5 mg/kg of LNA control or LNA anti-miR-27b oligonucleotides. Following two weeks of treatment, the expression of ABCA1 and LDLR were increased by 10-20% in the liver, demonstrating effective inhibition of miR-27b function. Intriguingly, no differences in circulating and hepatic lipids were observed between treatment groups. CONCLUSIONS: The results presented here provide evidence that short-term modulation of miR-27b expression in wild-type mice regulates hepatic LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Fígado/metabolismo , MicroRNAs/metabolismo , Receptores de LDL/metabolismo , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/sangue , Células COS , Chlorocebus aethiops , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Receptores de LDL/genética , Fatores de Tempo , Transfecção , Triglicerídeos/sangue
9.
Nat Med ; 21(11): 1280-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437365

RESUMO

The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL cholesterol (LDL-C). Whereas the transcriptional regulation of LDLR is well characterized, the post-transcriptional mechanisms that govern LDLR expression are just beginning to emerge. Here we develop a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen we identified and characterized miR-148a as a negative regulator of LDLR expression and activity and defined a sterol regulatory element-binding protein 1 (SREBP1)-mediated pathway through which miR-148a regulates LDL-C uptake. In mice, inhibition of miR-148a increased hepatic LDLR expression and decreased plasma LDL-C. Moreover, we found that miR-148a regulates hepatic expression of ATP-binding cassette, subfamily A, member 1 (ABCA1) and circulating high-density lipoprotein cholesterol (HDL-C) levels in vivo. These studies uncover a role for miR-148a as a key regulator of hepatic LDL-C clearance through direct modulation of LDLR expression and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate an elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Receptores de LDL/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Regulação da Expressão Gênica , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Receptores de LDL/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
FASEB J ; 29(2): 597-610, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392271

RESUMO

Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2(-/-) mice to Ldlr(-/-) mice results in marked reduction of the progression of atherosclerosis compared with Ldlr(-/-) mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2(-/-) macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.


Assuntos
Aterosclerose/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Glicemia/metabolismo , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Movimento Celular , Colesterol/metabolismo , Citocinas/metabolismo , Progressão da Doença , Inflamação , Insulina/química , Leucócitos/citologia , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Placa Aterosclerótica , Receptores de LDL/genética
11.
J Lipid Res ; 55(6): 1066-76, 2014 06.
Artigo em Inglês | MEDLINE | ID: mdl-24729624

RESUMO

ABCA1 is a major regulator of cellular cholesterol efflux and plasma HDL biogenesis. Even though the transcriptional activation of ABCA1 is well established, the posttranscriptional regulation of ABCA1 expression is poorly understood. Here, we investigate the potential contribution of the RNA binding protein (RBP) human antigen R (HuR) on the posttranscriptional regulation of ABCA1 expression. RNA immunoprecipitation assays demonstrate a direct interaction between HuR and ABCA1 mRNA. We found that HuR binds to the 3' untranslated region of ABCA1 and increases ABCA1 translation, while HuR silencing reduces ABCA1 expression and cholesterol efflux to ApoA1 in human hepatic (Huh-7) and monocytic (THP-1) cells. Interestingly, cellular cholesterol levels regulate the expression, intracellular localization, and interaction between HuR and ABCA1 mRNA. Finally, we found that HuR expression was significantly increased in macrophages from human atherosclerotic plaques, suggesting an important role for this RBP in controlling macrophage cholesterol metabolism in vivo. In summary, we have identified HuR as a novel posttranscriptional regulator of ABCA1 expression and cellular cholesterol homeostasis, thereby opening new avenues for increasing cholesterol efflux from atherosclerotic foam macrophages and raising circulat-ing HDL cholesterol levels.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Transportador 1 de Cassete de Ligação de ATP/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/genética , Colesterol/metabolismo , Proteína Semelhante a ELAV 1/genética , Células Espumosas/metabolismo , Células Espumosas/patologia , Homeostase , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1
12.
Mol Cell Biol ; 33(15): 2891-902, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716591

RESUMO

Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases.


Assuntos
Regulação da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Gluconeogênese , Glucose/genética , Glucose-6-Fosfatase/genética , Glicogênio/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macaca mulatta , Masculino , MicroRNAs/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
13.
Mol Cell Biol ; 33(11): 2339-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23547260

RESUMO

hsa-miR-33a and hsa-miR-33b, intronic microRNAs (miRNAs) located within the sterol regulatory element-binding protein 2 and 1 genes (Srebp-2 and -1), respectively, have recently been shown to regulate lipid homeostasis in concert with their host genes. Although the functional role of miR-33a and -b has been highly investigated, the role of their passenger strands, miR-33a* and -b*, remains unclear. Here, we demonstrate that miR-33a* and -b* accumulate to steady-state levels in human, mouse, and nonhuman primate tissues and share a similar lipid metabolism target gene network as their sister strands. Analogous to miR-33, miR-33* represses key enzymes involved in cholesterol efflux (ABCA1 and NPC1), fatty acid metabolism (CROT and CPT1a), and insulin signaling (IRS2). Moreover, miR-33* also targets key transcriptional regulators of lipid metabolism, including SRC1, SRC3, NFYC, and RIP140. Importantly, inhibition of either miR-33 or miR-33* rescues target gene expression in cells overexpressing pre-miR-33. Consistent with this, overexpression of miR-33* reduces fatty acid oxidation in human hepatic cells. Altogether, these data support a regulatory role for the miRNA* species and suggest that miR-33 regulates lipid metabolism through both arms of the miR-33/miR-33* duplex.


Assuntos
Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Ácidos Graxos/metabolismo , Humanos , Fígado/citologia , Fígado/fisiologia , Macaca mulatta/genética , Macrófagos/citologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
14.
Circ Res ; 112(12): 1592-601, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23519695

RESUMO

RATIONALE: Foam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate-binding cassette (ABC) transporters, including adenosine triphosphate-binding cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters. OBJECTIVE: We aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists. METHODS AND RESULTS: To map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver. CONCLUSIONS: miR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease.


Assuntos
HDL-Colesterol/sangue , Hepatócitos/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Apolipoproteína A-I/metabolismo , Células COS , Chlorocebus aethiops , Dieta Hiperlipídica , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Homeostase , Humanos , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/metabolismo , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Sulfonamidas/farmacologia
15.
Cell Cycle ; 10(19): 3249-52, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21946517

RESUMO

Metabolic diseases are characterized by the failure of regulatory genes or enzymes to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators of metabolic homeostasis, recent discoveries have shown the remarkable role of small non-coding RNAs (microRNAs) in the post-transcriptional regulation of a number of genes, and their involvement in many pathological states, such as diabetes, atherosclerosis and cancer. Of note is microRNA-33 (miR-33), an intronic microRNA (miRNA) located within the sterol regulatory element-binding protein (SREBP) genes, one of the master regulators of cholesterol and fatty acid metabolism. We have recently shown that miR-33 regulates cholesterol efflux and high-density lipoprotein (HDL) formation, as well as fatty acid oxidation and insulin signaling. These results describe a model in which miR-33 works in concert with its host genes to ensure that the cell's metabolic state is balanced, thus highlighting the clinical potential of miRNAs as novel therapeutic targets for treating cardiometabolic diseases.


Assuntos
Síndrome Metabólica/metabolismo , MicroRNAs/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas HDL/metabolismo , Síndrome Metabólica/patologia , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA