Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000021

RESUMO

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Toxinas Urêmicas , Remodelação Ventricular , Insuficiência Cardíaca/etiologia
2.
Theranostics ; 13(2): 659-672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632229

RESUMO

Rationale: Calcium plays an essential role in the biology of vertebrates. Calcium content in body fluids is maintained within a narrow physiologic range by feedback control. Phosphate is equally important for metabolism and is likewise controlled, albeit over a wider range. This results in a nearly supersaturated state of calcium phosphate in body liquids driving mineral precipitation in soft tissues, which is actively prevented by calcification inhibitors. The hepatic plasma protein fetuin-A is a circulating mineralization inhibitor regulating calcium phosphate crystal growth and calcified matrix metabolism. Ectopic mineralization is associated with many pathological conditions aggravating their outcome. Current diagnostic methods lack sensitivity towards microcalcifications representing the initial stages of the process. Given the irreversibility of established calcifications, novel diagnostic tools capable of detecting nascent calcium phosphate deposits are highly desirable. Methods: We designed fluorescent fusion proteins consisting of fetuin-A coupled to a green or red fluorescent protein derivate, mEmerald or mRuby3, respectively. The proteins were expressed in mammalian cell lines. Sequence optimization resolved folding issues and increased sensitivity of mineral binding. Chimeric proteins were tested for their ability to detect calcifications in cell cultures and tissue sections retrieved from calcification-prone mice. Results: We employed novel genetically labeled fetuin-A-based fluorescent proteins for the detection of ectopic calcifications. We show that fetuin-A-based imaging agents are non-toxic and suitable for live imaging of microcalcifications beyond the detection limit of conventional staining techniques. The ability of fetuin-A to preferentially bind nascent calcium phosphate crystals allowed the resolution of histopathological detail of early kidney damage that went previously undetected. Endogenous expression of fetuin-A fluorescent fusion proteins allowed extended live imaging of calcifying cells with unprecedented sensitivity and specificity. Conclusion: Ectopic microcalcifications represent a major clinical concern lacking effective diagnostic and treatment options. In this paper, we describe novel highly sensitive fetuin-A-based fluorescent probes for imaging microcalcifications. We show that fusion proteins consisting of a fetuin-A mineral binding moiety and a fluorescent protein are superior to the routine methods for detecting calcifications. They also surpass in continuous live cell imaging the chemically fluorescence labeled fetuin-A, which we established previously.


Assuntos
Calcinose , Cálcio , alfa-2-Glicoproteína-HS , Animais , Camundongos , alfa-2-Glicoproteína-HS/metabolismo , Calcinose/diagnóstico por imagem , Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Ligação Proteica
3.
Eur Heart J ; 44(10): 885-898, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36660854

RESUMO

AIMS: Calcific aortic valve disease (CAVD) is the most common valve disease, which consists of a chronic interplay of inflammation, fibrosis, and calcification. In this study, sortilin (SORT1) was identified as a novel key player in the pathophysiology of CAVD, and its role in the transformation of valvular interstitial cells (VICs) into pathological phenotypes is explored. METHODS AND RESULTS: An aortic valve (AV) wire injury (AVWI) mouse model with sortilin deficiency was used to determine the effects of sortilin on AV stenosis, fibrosis, and calcification. In vitro experiments employed human primary VICs cultured in osteogenic conditions for 7, 14, and 21 days; and processed for imaging, proteomics, and transcriptomics including single-cell RNA-sequencing (scRNA-seq). The AVWI mouse model showed reduced AV fibrosis, calcification, and stenosis in sortilin-deficient mice vs. littermate controls. Protein studies identified the transition of human VICs into a myofibroblast-like phenotype mediated by sortilin. Sortilin loss-of-function decreased in vitro VIC calcification. ScRNA-seq identified 12 differentially expressed cell clusters in human VIC samples, where a novel combined inflammatory myofibroblastic-osteogenic VIC (IMO-VIC) phenotype was detected with increased expression of SORT1, COL1A1, WNT5A, IL-6, and serum amyloid A1. VICs sequenced with sortilin deficiency showed decreased IMO-VIC phenotype. CONCLUSION: Sortilin promotes CAVD by mediating valvular fibrosis and calcification, and a newly identified phenotype (IMO-VIC). This is the first study to examine the role of sortilin in valvular calcification and it may render it a therapeutic target to inhibit IMO-VIC emergence by simultaneously reducing inflammation, fibrosis, and calcification, the three key pathological processes underlying CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Animais , Camundongos , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/metabolismo , Constrição Patológica , Células Cultivadas , Fibrose
4.
Transl Res ; 251: 2-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724933

RESUMO

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Assuntos
Aterosclerose , Calcinose , Dislipidemias , Placa Aterosclerótica , Camundongos , Humanos , Animais , Fosfatase Alcalina , Músculo Liso Vascular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Apolipoproteínas E , Triglicerídeos
5.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070177

RESUMO

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Artérias/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
6.
J Am Heart Assoc ; 10(20): e020834, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632804

RESUMO

BACKGROUND New pharmacological approaches are needed to prevent stent restenosis. This study tested the hypothesis that pemafibrate, a novel clinical selective PPARα (peroxisome proliferator-activated receptor α) agonist, suppresses coronary stent-induced arterial inflammation and neointimal hyperplasia. METHODS AND RESULTS Yorkshire pigs randomly received either oral pemafibrate (30 mg/day; n=6) or control vehicle (n=7) for 7 days, followed by coronary arterial implantation of 3.5 × 12 mm bare metal stents (2-4 per animal; 44 stents total). On day 7, intracoronary molecular-structural near-infrared fluorescence and optical coherence tomography imaging was performed to assess the arterial inflammatory response, demonstrating that pemafibrate reduced stent-induced inflammatory protease activity (near-infrared fluorescence target-to-background ratio: pemafibrate, median [25th-75th percentile]: 2.8 [2.5-3.3] versus control, 4.1 [3.3-4.3], P=0.02). At day 28, animals underwent repeat near-infrared fluorescence-optical coherence tomography imaging and were euthanized, and coronary stent tissue molecular and histological analyses. Day 28 optical coherence tomography imaging showed that pemafibrate significantly reduced stent neointima volume (pemafibrate, 43.1 [33.7-54.1] mm3 versus control, 54.2 [41.2-81.1] mm3; P=0.03). In addition, pemafibrate suppressed day 28 stent-induced cellular inflammation and neointima expression of the inflammatory mediators TNF-α (tumor necrosis factor-α) and MMP-9 (matrix metalloproteinase 9) and enhanced the smooth muscle differentiation markers calponin and smoothelin. In vitro assays indicated that the STAT3 (signal transducer and activator of transcription 3)-myocardin axes mediated the inhibitory effects of pemafibrate on smooth muscle cell proliferation. CONCLUSIONS Pemafibrate reduces preclinical coronary stent inflammation and neointimal hyperplasia following bare metal stent deployment. These results motivate further trials evaluating pemafibrate as a new strategy to prevent clinical stent restenosis.


Assuntos
Doença da Artéria Coronariana , PPAR alfa , Animais , Benzoxazóis , Butiratos , Constrição Patológica , Hiperplasia , Inflamação/prevenção & controle , Neointima , Stents , Suínos
7.
Cardiovasc Res ; 117(11): 2340-2353, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33523181

RESUMO

AIMS: Proteostasis maintains protein homeostasis and participates in regulating critical cardiometabolic disease risk factors including proprotein convertase subtilisin/kexin type 9 (PCSK9). Endoplasmic reticulum (ER) remodeling through release and incorporation of trafficking vesicles mediates protein secretion and degradation. We hypothesized that ER remodeling that drives mitochondrial fission participates in cardiometabolic proteostasis. METHODS AND RESULTS: We used in vitro and in vivo hepatocyte inhibition of a protein involved in mitochondrial fission, dynamin-related protein 1 (DRP1). Here, we show that DRP1 promotes remodeling of select ER microdomains by tethering vesicles at ER. A DRP1 inhibitor, mitochondrial division inhibitor 1 (mdivi-1) reduced ER localization of a DRP1 receptor, mitochondrial fission factor, suppressing ER remodeling-driven mitochondrial fission, autophagy, and increased mitochondrial calcium buffering and PCSK9 proteasomal degradation. DRP1 inhibition by CRISPR/Cas9 deletion or mdivi-1 alone or in combination with statin incubation in human hepatocytes and hepatocyte-specific Drp1-deficiency in mice reduced PCSK9 secretion (-78.5%). In HepG2 cells, mdivi-1 increased low-density lipoprotein receptor via c-Jun transcription and reduced PCSK9 mRNA levels via suppressed sterol regulatory binding protein-1c. Additionally, mdivi-1 reduced macrophage burden, oxidative stress, and advanced calcified atherosclerotic plaque in aortic roots of diabetic Apoe-deficient mice and inflammatory cytokine production in human macrophages. CONCLUSIONS: We propose a novel tethering function of DRP1 beyond its established fission function, with DRP1-mediated ER remodeling likely contributing to ER constriction of mitochondria that drives mitochondrial fission. We report that DRP1-driven remodeling of select ER micro-domains may critically regulate hepatic proteostasis and identify mdivi-1 as a novel small molecule PCSK9 inhibitor.


Assuntos
Aterosclerose/tratamento farmacológico , Dinaminas/antagonistas & inibidores , Retículo Endoplasmático/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/metabolismo , Quinazolinonas/farmacologia , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/patologia , Camundongos Knockout para ApoE , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Pró-Proteína Convertase 9/genética , Complexo de Endopeptidases do Proteassoma , Mapas de Interação de Proteínas , Proteólise , Proteostase , Via Secretória
8.
Cells ; 9(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987857

RESUMO

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein-protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit ß (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor ß-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite-gene-disease network, Alzheimer's disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.


Assuntos
Amiloide/metabolismo , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/genética , Genômica , Idoso , Benzotiazóis/metabolismo , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Metaboloma/genética , Pessoa de Meia-Idade , Pré-Albumina/metabolismo , Transdução de Sinais
9.
Toxins (Basel) ; 12(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183352

RESUMO

Patients with chronic kidney disease (CKD) are highly susceptible to cardiovascular (CV) complications, thus suffering from clinical manifestations such as heart failure and stroke. CV calcification greatly contributes to the increased CV risk in CKD patients. However, no clinically viable therapies towards treatment and prevention of CV calcification or early biomarkers have been approved to date, which is largely attributed to the asymptomatic progression of calcification and the dearth of high-resolution imaging techniques to detect early calcification prior to the 'point of no return'. Clearly, new intervention and management strategies are essential to reduce CV risk factors in CKD patients. In experimental rodent models, novel promising therapeutic interventions demonstrate decreased CKD-induced calcification and prevent CV complications. Potential diagnostic markers such as the serum T50 assay, which demonstrates an association of serum calcification propensity with all-cause mortality and CV death in CKD patients, have been developed. This review provides an overview of the latest observations and evaluates the potential of these new interventions in relation to CV calcification in CKD patients. To this end, potential therapeutics have been analyzed, and their properties compared via experimental rodent models, human clinical trials, and meta-analyses.


Assuntos
Calcinose/prevenção & controle , Cardiomiopatias/prevenção & controle , Insuficiência Renal Crônica/complicações , Animais , Biomarcadores/metabolismo , Calcinose/etiologia , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Humanos , Diálise Renal , Insuficiência Renal Crônica/terapia , Fatores de Risco
10.
Nephrol Dial Transplant ; 35(1): 65-73, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715488

RESUMO

BACKGROUND: Optimal phosphate control is an unmet need in chronic kidney disease (CKD). High serum phosphate increases calcification burden and is associated with mortality and cardiovascular disease in CKD. Nicotinamide (NA) alone or in combination with calcium-free phosphate binders might be a strategy to reduce phosphate levels and calcification and thus impact cardiovascular disease in CKD. METHODS: We studied the effect of NA alone and in combination with magnesium carbonate (MgCO3) as a potential novel treatment strategy. CKD was induced in dilute brown non-agouti/2 mice by subtotal nephrectomy followed by a high-phosphate diet (HP) and 7 weeks of treatment with NA, MgCO3 or their combination. Control mice underwent subtotal nephrectomy and received an HP or underwent sham surgery and received standard chow plus NA. RESULTS: CKD mice showed increased serum fibroblast growth factor 23 and calcium-phosphate product that was normalized by all treatment regimes. NA alone increased soft tissue and vascular calcification, whereas any treatment with MgCO3 significantly reduced calcification severity in CKD. While MgCO3 supplementation alone resulted in decreased calcification severity, it resulted in increased intestinal expression of the phosphate transporters type II sodium-dependent phosphate transporter 1 (Pit-1). Combined therapy of MgCO3 and NA reduced tissue calcification and normalized expression levels of intestinal phosphate transporter proteins. CONCLUSIONS: In conclusion, the data indicate that NA increases while MgCO3 reduces ectopic calcification severity. Augmented expression of intestinal phosphate transporters by MgCO3 treatment was abolished by the addition of NA. However, the clinical relevance of the latter remains to be explored. Importantly, the data suggest no benefit of NA regarding treatment of calcification in addition to MgCO3.


Assuntos
Magnésio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Niacinamida/farmacologia , Insuficiência Renal Crônica/complicações , Uremia/complicações , Calcificação Vascular/prevenção & controle , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/citologia , Calcificação Vascular/etiologia , Complexo Vitamínico B/farmacologia
11.
Toxins (Basel) ; 11(7)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277311

RESUMO

Hydrophobic uremic toxins accumulate in patients with chronic kidney disease, contributing to a highly increased cardiovascular risk. The clearance of these uremic toxins using current hemodialysis techniques is limited due to their hydrophobicity and their high binding affinity to plasma proteins. Adsorber techniques may be an appropriate alternative to increase hydrophobic uremic toxin removal. We developed an extracorporeal, whole-blood bifunctional adsorber particle consisting of a porous, activated charcoal core with a hydrophilic polyvinylpyrrolidone surface coating. The adsorption capacity was quantified using analytical chromatography after perfusion of the particles with an albumin solution or blood, each containing mixtures of hydrophobic uremic toxins. A time-dependent increase in hydrophobic uremic toxin adsorption was depicted and all toxins showed a high binding affinity to the adsorber particles. Further, the particle showed a sufficient hemocompatibility without significant effects on complement component 5a, thrombin-antithrombin III complex, or thrombocyte concentration in blood in vitro, although leukocyte counts were slightly reduced. In conclusion, the bifunctional adsorber particle with cross-linked polyvinylpyrrolidone coating showed a high adsorption capacity without adverse effects on hemocompatibility in vitro. Thus, it may be an interesting candidate for further in vivo studies with the aim to increase the efficiency of conventional dialysis techniques.


Assuntos
Carvão Vegetal/química , Cresóis/química , Indicã/química , Fenilacetatos/química , Povidona/química , Insuficiência Renal/sangue , Ésteres do Ácido Sulfúrico/química , Uremia , Adsorção , Contagem de Células Sanguíneas , Humanos , Diálise Renal
12.
Sci Rep ; 8(1): 15702, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356109

RESUMO

Cardiovascular diseases are the main cause of death worldwide, demanding new treatments and interventions. Recently, extracellular vesicles (EVs) came in focus as important carriers of protective molecules such as miRNAs and proteins which might contribute to e.g. improved cardiac function after myocardial infarction. EVs can be secreted from almost every cell type in the human body and can be transferred via the bloodstream in almost every compartment. To provide an all-encompassing overview of studies investigating these beneficial properties of EVs we performed a systematic review/meta-analysis of studies investigating the cardioprotective characteristics of EVs. Forty-three studies were investigated and catalogued according to the EV source. We provide an in-depth analysis of the purification method, size of the EVs, the conducted experiments to investigate the beneficial properties of EVs as well as the major effector molecule encapsulated in EVs mediating protection. This study provides evidence that EVs from different cell types and body fluids provide cardioprotection in different in vivo and in vitro studies. A meta-analysis was performed to estimate the underlying effect size. In conclusion, we demonstrated that EVs from different sources might serve as a promising tool for treating cardiovascular diseases in the future.


Assuntos
Cardiotônicos/uso terapêutico , Vesículas Extracelulares/fisiologia , Angina Estável/sangue , Animais , Líquidos Corporais , Cardiotônicos/farmacologia , Fracionamento Celular , Linhagem Celular , Avaliação de Medicamentos , Vesículas Extracelulares/química , Fibroblastos/química , Fibroblastos/ultraestrutura , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/ultraestrutura , Infarto do Miocárdio/sangue , Infarto do Miocárdio/terapia , Miócitos Cardíacos/química , Miócitos Cardíacos/ultraestrutura , Especificidade de Órgãos , Estresse Oxidativo
13.
Respir Res ; 19(1): 183, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236113

RESUMO

BACKGROUND: Fibroblast growth factor 23 (FGF23) regulates phosphate metabolism by increasing renal phosphate excretion and decreasing 1.25-dihydroxyvitamin D synthesis. Reports about hypophosphatemia in patients with chronic obstructive pulmonary disease (COPD) suggest altered phosphate metabolism. Therefore, we hypothesized that disturbances in phosphate-regulatory hormones such as FGF23 and parathyroid hormone (PTH) are present in COPD patients. METHODS: We investigated 40 COPD patients (63.5 ± 9.9 years, 27 male), each matched with two age- and sex-matched controls without any primary lung disease. COPD patients underwent lung function testing in advance. All patients had a glomerular filtration rate (GFR) > 60 mL/min/1.73m2. We measured concentrations of intact FGF23 (iFGF23) and c-terminal FGF23 (c-term FGF23), phosphate, parathyroid hormone (PTH) and C-reactive protein (CRP) levels in COPD patients and controls. RESULTS: Phosphate (1.0 ± 02 vs. 1.1 ± 0.2 mmol/L; p = 0.027), PTH (54.2 ± 29.4 vs. 68.7 ± 31.8 pg/mL; p = 0.002) and iFGF23 (46.3 ± 29.0 vs. 57.5 ± 33.5 pg/mL; p = 0.026 ) levels were significantly lower in COPD patients compared with controls. There was a significant negative correlation between c-term FGF23 and total lung capacity (r = - 0.4; p = 0.01), and between c-term FGF23 and CRP in COPD patients (r = 0.48; p = 0.002). iFGF23 and c-term FGF23 were positively correlated with phosphate and PTH in the control group. CONCLUSION: We confirmed lower average serum phosphate levels in COPD patients compared with controls. However, our data do not suggest a causative role for FGF23 or PTH in COPD because levels of both phosphate-lowering hormones appear to be adaptively decreased as well. Therefore, further investigations are needed to identify the pathogenesis of low phosphate levels in patients with COPD and the relationship between phosphate-regulatory hormones and disease progression.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Hormônio Paratireóideo/sangue , Fosfatos/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-Idade
14.
Nat Commun ; 7: 12849, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796300

RESUMO

Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.


Assuntos
Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Transcrição STAT1/metabolismo , ADP-Ribosilação , Animais , Apoptose , Aterosclerose , Sobrevivência Celular , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-4/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Placa Aterosclerótica/metabolismo , Células RAW 264.7 , Interferência de RNA , Ribose/química , Células THP-1
15.
Cell Stem Cell ; 19(5): 628-642, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27618218

RESUMO

Mesenchymal stem cell (MSC)-like cells reside in the vascular wall, but their role in vascular regeneration and disease is poorly understood. Here, we show that Gli1+ cells located in the arterial adventitia are progenitors of vascular smooth muscle cells and contribute to neointima formation and repair after acute injury to the femoral artery. Genetic fate tracing indicates that adventitial Gli1+ MSC-like cells migrate into the media and neointima during athero- and arteriosclerosis in ApoE-/- mice with chronic kidney disease. Our data indicate that Gli1+ cells are a major source of osteoblast-like cells during calcification in the media and intima. Genetic ablation of Gli1+ cells before induction of kidney injury dramatically reduced the severity of vascular calcification. These findings implicate Gli1+ cells as critical adventitial progenitors in vascular remodeling after acute and during chronic injury and suggest that they may be relevant therapeutic targets for mitigation of vascular calcification.


Assuntos
Túnica Adventícia/patologia , Células-Tronco Mesenquimais/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Insuficiência Renal Crônica/complicações , Células-Tronco/patologia , Calcificação Vascular/complicações , Idoso , Animais , Antígenos CD34/metabolismo , Ataxina-1/metabolismo , Biomarcadores/metabolismo , Desdiferenciação Celular , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Placa Aterosclerótica/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Insuficiência Renal Crônica/patologia , Calcificação Vascular/patologia , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Atherosclerosis ; 251: 109-118, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318830

RESUMO

BACKGROUND AND AIMS: Studying atherosclerotic calcification in vivo requires mouse models with genetic modifications. Previous studies showed that injection of recombinant adeno-associated virus vector (AAV) encoding a gain-of-function mutant PCSK9 into mice promotes atherosclerosis. We aimed to study cardiovascular calcification induced by PCSK9 AAV in C57BL/6J mice. METHODS: 10 week-old C57BL/6J mice received a single injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9). Ldlr(-/-) mice served as positive controls. Mice consumed a high-fat, high-cholesterol diet for 15 or 20 weeks. Aortic calcification was assessed by fluorescence reflectance imaging (FRI) of a near-infrared calcium tracer. RESULTS: Serum levels of PCSK9 (0.14 µg/mL to 20 µg/mL, p < 0.01) and total cholesterol (82 mg/dL to 820 mg/dL, p < 0.01) increased within one week after injection and remained elevated for 20 weeks. Atherosclerotic lesion size was similar between PCSK9 AAV and Ldlr(-/-) mice. Aortic calcification was 0.01% ± 0.01 in PCSK9 AAV mice and 15.3% ± 6.1 in Ldlr(-/-) mice at 15 weeks (p < 0.01); by 20 weeks, the PCSK9 AAV mice aortic calcification grew to 12.4% ± 4.9. Tissue non-specific alkaline phosphatase activity was similar in PCSK9 AAV mice and Ldlr(-/-) mice at 15 and 20 weeks, respectively. As example of the utility of this model in testing modulators of calcification in vivo, PCSK9 AAV injection to sortilin-deficient mice demonstrated reduced aortic calcification by 46.3% (p < 0.05) compared to littermate controls. CONCLUSIONS: A single injection of gain-of-function PCSK9 AAV into C57BL/6J mice is a useful tool to study cardiovascular calcification in mice with no genetic manipulation.


Assuntos
Calcinose/patologia , Mutação , Pró-Proteína Convertase 9/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Dependovirus , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Pró-Proteína Convertases/genética , Receptores de LDL/genética
17.
J Mol Cell Cardiol ; 94: 13-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996755

RESUMO

PURPOSE: Calcific aortic valve disease (CAVD) is the most prevalent valve disease in the Western world. Recent difficulty in translating experimental results on statins to beneficial clinical effects warrants the need for understanding the role of valvular interstitial cells (VICs) in CAVD. In two-dimensional culture conditions, VICs undergo spontaneous activation similar to pathological differentiation, which intrinsically limits the use of in vitro models to study CAVD. Here, we hypothesized that a three-dimensional (3D) culture system based on naturally derived extracellular matrix polymers, mimicking the microenvironment of native valve tissue, could serve as a physiologically relevant platform to study the osteogenic differentiation of VICs. PRINCIPAL RESULTS: Aortic VICs loaded into 3D hydrogel constructs maintained a quiescent phenotype, similar to healthy human valves. In contrast, osteogenic environment induced an initial myofibroblast differentiation (hallmarked by increased alpha smooth muscle actin [α-SMA] expression), followed by an osteoblastic differentiation, characterized by elevated Runx2 expression, and subsequent calcific nodule formation recapitulating CAVD conditions. Silencing of α-SMA under osteogenic conditions diminished VIC osteoblast-like differentiation and calcification, indicating that a VIC myofibroblast-like phenotype may precede osteogenic differentiation in CAVD. MAJOR CONCLUSIONS: Using a 3D hydrogel model, we simulated events that occur during early CAVD in vivo and provided a platform to investigate mechanisms of CAVD. Differentiation of valvular interstitial cells to myofibroblasts was a key mechanistic step in the process of early mineralization. This novel approach can provide important insight into valve pathobiology and serve as a promising tool for drug screening.


Assuntos
Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/etiologia , Calcinose/metabolismo , Actinas/genética , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Biomarcadores , Calcinose/genética , Calcinose/patologia , Técnicas de Cultura de Células , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Imunofluorescência , Inativação Gênica , Humanos , Hidrogéis , Técnicas In Vitro , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fenótipo , Suínos
18.
Semin Cell Dev Biol ; 46: 68-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358815

RESUMO

The presence of cardiovascular calcification significantly predicts patients' morbidity and mortality. Calcific mineral deposition within the soft cardiovascular tissues disrupts the normal biomechanical function of these tissues, leading to complications such as heart failure, myocardial infarction, and stroke. The realization that calcification results from active cellular processes offers hope that therapeutic intervention may prevent or reverse the disease. To this point, however, no clinically viable therapies have emerged. This may be due to the lack of certainty that remains in the mechanisms by which mineral is deposited in cardiovascular tissues. Gaining new insight into this process requires a multidisciplinary approach. The pathological changes in cell phenotype that lead to the physicochemical deposition of mineral and the resultant effects on tissue biomechanics must all be considered when designing strategies to treat cardiovascular calcification. In this review, we overview the current cardiovascular calcification paradigm and discuss emerging techniques that are providing new insight into the mechanisms of ectopic calcification.


Assuntos
Calcinose/metabolismo , Doenças Cardiovasculares/metabolismo , Doença da Artéria Coronariana/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Doenças Cardiovasculares/patologia , Colágeno/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Inflamação/metabolismo , Modelos Biológicos , Placa Aterosclerótica/patologia
19.
Atherosclerosis ; 242(1): 251-260, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232165

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is the most common heart valve disease in the Western world. We previously proposed that valvular endothelial cells (VECs) replenish injured adult valve leaflets via endothelial-to-mesenchymal transformation (EndMT); however, whether EndMT contributes to valvular calcification is unknown. We hypothesized that aortic VECs undergo osteogenic differentiation via an EndMT process that can be inhibited by valvular interstitial cells (VICs). APPROACH AND RESULTS: VEC clones underwent TGF-ß1-mediated EndMT, shown by significantly increased mRNA expression of the EndMT markers α-SMA (5.3 ± 1.2), MMP-2 (13.5 ± 0.6) and Slug (12 ± 2.1) (p < 0.05), (compared to unstimulated controls). To study the effects of VIC on VEC EndMT, clonal populations of VICs were derived from the same valve leaflets, placed in co-culture with VECs, and grown in control/TGF-ß1 supplemented media. In the presence of VICs, EndMT was inhibited, shown by decreased mRNA expression of α-SMA (0.1 ± 0.5), MMP-2 (0.1 ± 0.1), and Slug (0.2 ± 0.2) (p < 0.05). When cultured in osteogenic media, VECs demonstrated osteogenic changes confirmed by increase in mRNA expression of osteocalcin (8.6 ± 1.3), osteopontin (3.7 ± 0.3), and Runx2 (5.5 ± 1.5). The VIC presence inhibited VEC osteogenesis, demonstrated by decreased expression of osteocalcin (0.4 ± 0.1) and osteopontin (0.2 ± 0.1) (p < 0.05). Time course analysis suggested that EndMT precedes osteogenesis, shown by an initial increase of α-SMA and MMP-2 (day 7), followed by an increase of osteopontin and osteocalcin (day 14). CONCLUSIONS: The data indicate that EndMT may precede VEC osteogenesis. This study shows that VICs inhibit VEC EndMT and osteogenesis, indicating the importance of VEC-VIC interactions in valve homeostasis.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Calcinose/patologia , Comunicação Celular , Diferenciação Celular , Células Endoteliais/patologia , Osteogênese , Animais , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Biomarcadores/metabolismo , Calcinose/genética , Calcinose/metabolismo , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Knockout , Osteogênese/efeitos dos fármacos , Osteogênese/genética , RNA Mensageiro/metabolismo , Ovinos , Fatores de Tempo , Fator de Crescimento Transformador beta1/farmacologia
20.
Arterioscler Thromb Vasc Biol ; 34(3): 626-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357058

RESUMO

OBJECTIVE: Clinical evidence has linked vascular calcification in advanced atherosclerotic plaques with overt cardiovascular disease and mortality. Bone resorbing monocyte-derived osteoclast-like cells are sparse in these plaques, indicating that their differentiation capability could be suppressed. Here, we seek to characterize the process of osteoclastogenesis by identifying novel regulators and pathways, with the aim of exploring possible strategies to reduce calcification. APPROACH AND RESULTS: We used a quantitative mass spectrometry strategy, tandem mass tagging, to quantify changes in the proteome of osteoclast-like cells differentiated from RAW264.7 cells in response to, receptor activator of nuclear factor κ-B ligand induction, a common in vitro model for osteogenesis. More than 4000 proteins were quantified, of which 138 were identified as novel osteoclast-related proteins. We selected 5 proteins for subsequent analysis (cystathionine γ-lyase [Cth/CSE], EGF-like repeat and discoidin I-like domain-containing protein 3, integrin α FG-GAP repeat containing 3, adseverin, and serpinb6b) and show that gene expression levels are also increased. Further analysis of the CSE transcript profile reveals an early onset of an mRNA increase. Silencing of CSE by siRNA and dl-propargylglycine, a CSE inhibitor, attenuated receptor activator of nuclear factor κ-B ligand-induced tartrate-resistant acid phosphatase type 5 activity and pit formation, suggesting that CSE is a potent inducer of calcium resorption. Moreover, knockdown of CSE suppressed expression of osteoclast differentiation markers. CONCLUSIONS: Our large-scale proteomics study identified novel candidate regulators or markers for osteoclastogenesis and demonstrated that CSE may act in early stages of osteoclastogenesis.


Assuntos
Cistationina gama-Liase/fisiologia , Osteoclastos/enzimologia , Alcinos/farmacologia , Animais , Aorta Torácica/metabolismo , Apolipoproteínas E/deficiência , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular Tumoral , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/genética , Gorduras na Dieta/toxicidade , Perfilação da Expressão Gênica , Glicina/análogos & derivados , Glicina/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Proteômica , Ligante RANK/farmacologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA