Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063381

RESUMO

Primary cilia are sensory membrane protrusions whose dysfunction causes ciliopathies. INPP5E is a ciliary phosphoinositide phosphatase mutated in ciliopathies like Joubert syndrome. INPP5E regulates numerous ciliary functions, but how it accumulates in cilia remains poorly understood. Herein, we show INPP5E ciliary targeting requires its folded catalytic domain and is controlled by four conserved ciliary localization signals (CLSs): LLxPIR motif (CLS1), W383 (CLS2), FDRxLYL motif (CLS3) and CaaX box (CLS4). We answer two long-standing questions in the field. First, partial CLS1-CLS4 redundancy explains why CLS4 is dispensable for ciliary targeting. Second, the essential need for CLS2 clarifies why CLS3-CLS4 are together insufficient for ciliary accumulation. Furthermore, we reveal that some Joubert syndrome mutations perturb INPP5E ciliary targeting, and clarify how each CLS works: (i) CLS4 recruits PDE6D, RPGR and ARL13B, (ii) CLS2-CLS3 regulate association to TULP3, ARL13B, and CEP164, and (iii) CLS1 and CLS4 cooperate in ATG16L1 binding. Altogether, we shed light on the mechanisms of INPP5E ciliary targeting, revealing a complexity without known parallels among ciliary cargoes.


Assuntos
Ciliopatias , Doenças Renais Císticas , Anormalidades Múltiplas , Cerebelo/anormalidades , Cílios/metabolismo , Anormalidades do Olho , Proteínas do Olho/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Retina/anormalidades
2.
Methods Cell Biol ; 94: 199-222, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20362092

RESUMO

The Hedgehog (Hh) signal transduction pathway is essential for the development and patterning of numerous organ systems, and has important roles in a variety of human cancers. Genetic screens for mouse embryonic patterning mutants first showed a connection between mammalian Hh signaling and intraflagellar transport (IFT), a process required for construction of the primary cilium, a small cellular projection found on most vertebrate cells. Additional genetic and cell biological studies have provided very strong evidence that mammalian Hh signaling depends on the primary cilium. Here, we review the evidence that defines the integral roles that IFT proteins and cilia play in the regulation of the Hh signal transduction pathway in vertebrates. We discuss the mechanisms that control localization of Hh pathway proteins to the cilium, focusing on the transmembrane protein Smoothened (Smo), which moves into the cilium in response to Hh ligand. The phenotypes caused by loss of cilia-associated proteins are complex, which suggests that cilia and IFT play active roles in mediating Hh signaling rather than serving simply as a compartment in which pathway components are concentrated. Hh signaling in Drosophila does not depend on cilia, but there appear to be ancient links between cilia and components of the Hh pathway that may reveal how this fundamental difference between the Drosophila and mammalian Hh pathways arose in evolution.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Animais , Padronização Corporal , Cílios/ultraestrutura , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA