Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 152: 93-111, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208270

RESUMO

Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.


Assuntos
Estimulação Encefálica Profunda , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Eletrodos , Neurofisiologia
2.
PLoS One ; 18(4): e0284949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104368

RESUMO

INTRODUCTION: Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve biochemical remission, warranting investigation into epigenetic and molecular signatures associated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regulation, was differentially methylated between GHPA and nonfunctional pituitary adenoma (NFPA). We aimed to validate the differential DNA methylation and related MAX protein expression profiles between NFPA and GHPA. METHODS: DNA methylation levels were measured in 52 surgically resected tumors (37 NFPA, 15 GHPA) at ~100,000 known MAX binding sites derived using ChIP-seq analysis from ENCODE. Findings were correlated with MAX protein expression using a constructed tissue microarray (TMA). Gene ontology analysis was performed to explore downstream genetic and signaling pathways regulated by MAX. RESULTS: GHPA had more hypomethylation events across all known MAX binding sites. Of binding sites defined using ChIP-seq analysis, 1,551 sites had significantly different methylation patterns between the two cohorts; 432 occurred near promoter regions potentially regulated by MAX, including promoters of TNF and MMP9. Gene ontology analysis suggested enrichment in genes involved in oxygen response, immune system regulation, and cell proliferation. Thirteen MAX binding sites were within coding regions of genes. GHPA demonstrated significantly increased expression of MAX protein compared to NFPA. CONCLUSION: GHPA have significantly different DNA methylation and downstream protein expression levels of MAX compared to NFPA. These differences may influence mechanisms involved with cellular proliferation, tumor invasion and hormonal secretion.


Assuntos
Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Humanos , Adenoma/patologia , Hormônio do Crescimento , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/complicações , Neoplasias Hipofisárias/patologia
3.
Neurosurg Focus ; 49(1): E4, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610288

RESUMO

OBJECTIVE: Motor brain-computer interface (BCI) represents a new frontier in neurological surgery that could provide significant benefits for patients living with motor deficits. Both the primary motor cortex and posterior parietal cortex have successfully been used as a neural source for human motor BCI, leading to interest in exploring other brain areas involved in motor control. The amygdala is one area that has been shown to have functional connectivity to the motor system; however, its role in movement execution is not well studied. Gamma oscillations (30-200 Hz) are known to be prokinetic in the human cortex, but their role is poorly understood in subcortical structures. Here, the authors use direct electrophysiological recordings and the classic "center-out" direct-reach experiment to study amygdaloid gamma-band modulation in 8 patients with medically refractory epilepsy. METHODS: The study population consisted of 8 epilepsy patients (2 men; age range 21-62 years) who underwent implantation of micro-macro depth electrodes for seizure localization and EEG monitoring. Data from the macro contacts sampled at 2000 Hz were used for analysis. The classic center-out direct-reach experiment was used, which consists of an intertrial interval phase, a fixation phase, and a response phase. The authors assessed the statistical significance of neural modulation by inspecting for nonoverlapping areas in the 95% confidence intervals of spectral power for the response and fixation phases. RESULTS: In 5 of the 8 patients, power spectral analysis showed a statistically significant increase in power within regions of the gamma band during the response phase compared with the fixation phase. In these 5 patients, the 95% bootstrapped confidence intervals of trial-averaged power in contiguous frequencies of the gamma band during the response phase were above, and did not overlap with, the confidence intervals of trial-averaged power during the fixation phase. CONCLUSIONS: To the authors' knowledge, this is the first time that direct neural recordings have been used to show gamma-band modulation in the human amygdala during the execution of voluntary movement. This work indicates that gamma-band modulation in the amygdala could be a contributing source of neural signals for use in a motor BCI system.


Assuntos
Tonsila do Cerebelo/fisiologia , Epilepsia/fisiopatologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Córtex Motor/fisiologia , Lobo Parietal/fisiologia
4.
J Neurosurg ; : 1-7, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30684944

RESUMO

Closed-loop brain-responsive neurostimulation via the RNS System is a treatment option for adults with medically refractory focal epilepsy. Using a novel technique, 2 RNS Systems (2 neurostimulators and 4 leads) were successfully implanted in a single patient with bilateral parietal epileptogenic zones. In patients with multiple epileptogenic zones, this technique allows for additional treatment options. Implantation can be done successfully, without telemetry interference, using proper surgical planning and neurostimulator positioning.Trajectories for the depth leads were planned using neuronavigation with CT and MR imaging. Stereotactic frames were used for coordinate targeting. Each neurostimulator was positioned with maximal spacing to avoid telemetry interference while minimizing patient discomfort. A separate J-shaped incision was used for each neurostimulator to allow for compartmentalization in case of infection. In order to minimize surgical time and risk of infection, the neurostimulators were implanted in 2 separate surgeries, approximately 3 weeks apart.The neurostimulators and leads were successfully implanted without adverse surgical outcomes. The patient recovered uneventfully, and the early therapy settings over several months resulted in preliminary decreases in aura and seizure frequency. Stimulation by one of the neurostimulators did not result in stimulation artifacts detected by the contralateral neurostimulator.

5.
World Neurosurg ; 122: 366-371, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447465

RESUMO

BACKGROUND: Acoustic neuromas (ANs) are benign intracranial tumors that arise from myelin-forming Schwann cells surrounding the vestibular branch of the vestibulocochlear nerve (cranial nerve VIII). Treatment options for AN include observation, radiosurgery, and microsurgical resection. Gamma Knife radiosurgery (GKRS) for AN has well-documented short-term safety and efficacy for carefully selected patients. Recent innovations in GKRS technology may improve long-term outcomes. The aim of this study was to report long-term tumor control and complication rates after GKRS for sporadic AN. METHODS: A retrospective review was performed of patients with sporadic ANs at Keck Hospital of USC who underwent GKRS from 1995 to 2015 with a minimum follow-up of 12 months. RESULTS: Median age at treatment was 63.7 years (range, 19.4-84.2 years). Median follow-up time was 69 months. Median tumor diameter was 17.5 mm (range, 5.0-29.0 mm), and median treatment volume was 2.41 cm3 (range, 0.09-12.8 cm3). Median prescribed dose was 12.50 Gy. Tumor control was achieved in 51 (98.1%) patients over the follow-up period (12-192 months). One patient experienced tumor progression at 22 months after GKRS, requiring surgical intervention, which ultimately resulted in remission. Complications included hearing loss (17.3%), worsened balance/ataxia (7.7%), and hydrocephalus (1.92%). CONCLUSIONS: Patients undergoing GKRS for sporadic ANs had high rates of tumor control over a median follow-up time of >5 years. Improvements in radiosurgery treatment planning were seen in the most recent cohort of patients. GKRS is a safe and effective modality for treating sporadic ANs in selected patients.


Assuntos
Neuroma Acústico/radioterapia , Radiocirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA