Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 840, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573467

RESUMO

Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fluorescência , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Nat Nanotechnol ; 17(2): 197-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811553

RESUMO

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.


Assuntos
DNA/farmacologia , Nanopartículas Metálicas/química , Nicotiana/genética , RNA Interferente Pequeno/genética , DNA/química , Inativação Gênica , Técnicas de Transferência de Genes , Ouro/química , Ouro/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Nicotiana/crescimento & desenvolvimento
3.
Nano Lett ; 21(13): 5859-5866, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152779

RESUMO

RNA interference, which involves the delivery of small interfering RNA (siRNA), has been used to validate target genes, to understand and control cellular metabolic pathways, and to use as a "green" alternative to confer pest tolerance in crops. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit plant species range limitations and uncontrolled DNA integration into the plant genome. Here, we synthesize polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plants and show that these nanoclusters enable efficient gene knockdown. We further demonstrate that PEI-AuNCs protect siRNA from RNase degradation while the complex is small enough to bypass the plant cell wall. Consequently, AuNCs enable gene knockdown with efficiencies of up 76.5 ± 5.9% and 76.1 ± 9.5% for GFP and ROQ1, respectively, with no observable toxicity. Our data suggest that AuNCs can deliver siRNA into intact plant cells for broad applications in plant biotechnology.


Assuntos
Ouro , Células Vegetais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Polietilenoimina , RNA Interferente Pequeno/genética
4.
Proc Natl Acad Sci U S A ; 116(15): 7543-7548, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910954

RESUMO

Delivery of biomolecules to plants relies on Agrobacterium infection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene in Nicotiana benthamiana leaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.


Assuntos
Brassicaceae , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Técnicas de Transferência de Genes , Nanopartículas , Nicotiana , Plantas Geneticamente Modificadas , Brassicaceae/genética , Brassicaceae/metabolismo , DNA de Plantas/genética , DNA de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Nicotiana/genética , Nicotiana/metabolismo
5.
Nat Nanotechnol ; 14(5): 456-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804481

RESUMO

Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis and crop engineering. The plant cell wall is a barrier that limits the ease and throughput of exogenous biomolecule delivery to plants. Current delivery methods either suffer from host-range limitations, low transformation efficiencies, tissue damage or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into intact plants of several species with pristine and chemically functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.


Assuntos
Técnicas de Transferência de Genes , Gossypium/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Triticum/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA