Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 26(20): 4011-4027, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016860

RESUMO

PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology.


Assuntos
Proteínas de Transporte/genética , Glaucoma de Ângulo Fechado/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Barreira Hematoaquosa/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Células Epiteliais/metabolismo , Predisposição Genética para Doença , Glaucoma de Ângulo Fechado/metabolismo , Glaucoma de Ângulo Fechado/patologia , Humanos , Junções Intercelulares/metabolismo , Iris/metabolismo , Iris/patologia , Polimorfismo de Nucleotídeo Único , Junções Íntimas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Invest Ophthalmol Vis Sci ; 55(6): 3833-41, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24801512

RESUMO

PURPOSE: The role of the recently identified primary angle closure glaucoma (PACG) susceptibility gene, pleckstrin homology domain containing, family A member 7 (PLEKHA7), in PACG is unknown. PLEKHA7 associates with apical junctional complexes (AJCs) and is thus implicated in paracellular fluid regulation. We aimed to determine PLEKHA7's localization in the eye and its association with AJCs to elucidate its potential role in PACG. METHODS: Total RNA from ocular tissues was isolated and analyzed by real-time PCR. Frozen and paraffin-embedded human globes were sectioned and used for immunohistochemistry and immunofluorescence analysis. RESULTS: Specific PLEKHA7 expression was found in the muscles, vascular endothelium, and epithelium of the iris, ciliary body and ciliary processes, trabecular meshwork (TM), and choroid. PLEKHA7 expression in musculature and vascular endothelium was confirmed with smooth muscle marker, SMA, and endothelium marker, PECAM-1, respectively. At the above sites, PLEKHA7 colocalization was seen with adherens junction markers (E-cadherin and ß-catenin) and tight junction markers (ZO-1). CONCLUSIONS: Specific localization of PLEKHA7 was found within PACG-related structures (iris, ciliary body, and choroid) and blood-aqueous barrier (BAB) structures (posterior iris epithelium, nonpigmented ciliary epithelium, iris and ciliary body microvasculature). The association of PLEKHA7 with AJCs in the eye suggests a potential role for PLEKHA7 in PACG via fluidic regulation. Novel expression of PLEKHA7 was also seen in the ocular smooth muscles and vascular endothelia.


Assuntos
Proteínas de Transporte/genética , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Glaucoma de Ângulo Fechado/genética , Junções Intercelulares/metabolismo , Actinas/metabolismo , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Corpo Ciliar/irrigação sanguínea , Corpo Ciliar/patologia , Técnica Indireta de Fluorescência para Anticorpo , Glaucoma de Ângulo Fechado/metabolismo , Glaucoma de Ângulo Fechado/patologia , Humanos , Imuno-Histoquímica , Iris/irrigação sanguínea , Iris/patologia , Microscopia Confocal , Músculo Liso/metabolismo , Plasmídeos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Proteína da Zônula de Oclusão-1/metabolismo
3.
Cell Cycle ; 8(5): 773-9, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19221488

RESUMO

Many biological activities naturally oscillate. Here, we show that the NAD(+)/NADH ratios (redox status) fluctuate during mammalian cell cycle, with the S-phase redox status being the least oxidative. The S-phase NAD(+)/NADH redox status gates histone expression and S-phase progression, and may provide a genome protection mechanism during S-phase DNA replication as implicated in yeast. Accordingly, perturbing the cellular redox inhibits histone expression and leads to S-phase arrest. We propose that the S-phase NAD(+)/NADH redox status constitutes a redox signaling, which along with the cyclin E/cdk2 signaling regulates histone expression and S-phase progression.


Assuntos
Histonas/metabolismo , NAD/metabolismo , Fase S , Ciclo Celular , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células HeLa , Histonas/genética , Humanos , Oxirredução , Transdução de Sinais
4.
Mol Endocrinol ; 23(6): 932-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19246513

RESUMO

Eukaryotic cells sense extracellular glucose concentrations via diverse mechanisms to regulate the expression of genes involved in metabolic control. One such example is the tight correlation between the expression of thioredoxin-interacting protein (Txnip) and extracellular glucose levels. In this report, we show that the transcription of the Txnip gene is induced by adenosine-containing molecules, of which an intact adenosine moiety is necessary and sufficient. Txnip promoter contains a carbohydrate response element, which mediates the induction of Txnip expression by these molecules in a glucose-dependent manner. Max-like protein X and MondoA are transcription factors previously shown to stimulate glucose-dependent Txnip expression and are shown here to convey stimulatory signals from extracellular adenosine-containing molecules to the Txnip promoter. The regulatory role of these molecules may be exerted via amplifying glucose signaling. Hence, this revelation may pave the way for interventions aimed toward metabolic disorders resulting from abnormal glucose homeostasis.


Assuntos
Trifosfato de Adenosina/farmacologia , Adenosina/farmacologia , Proteínas de Transporte/genética , Glucose/metabolismo , NAD/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Tiorredoxinas/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA