Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proteomics ; 24(1-2): e2200332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876146

RESUMO

This article summarizes the PROTREC method and investigates the impact that the different hyper-parameters have on the task of missing protein prediction using PROTREC. We evaluate missing protein recovery rates using different PROTREC score selection approaches (MAX, MIN, MEDIAN, and MEAN), different PROTREC score thresholds, as well as different complex size thresholds. In addition, we included two additional cancer datasets in our analysis and introduced a new validation method to check both the robustness of the PROTREC method as well as the correctness of our analysis. Our analysis showed that the missing protein recovery rate can be improved by adopting PROTREC score selection operations of MIN, MEDIAN, and MEAN instead of the default MAX. However, this may come at a cost of reduced numbers of proteins predicted and validated. The users should therefore choose their hyper-parameters carefully to find a balance in the accuracy-quantity trade-off. We also explored the possibility of combining PROTREC with a p-value-based method (FCS) and demonstrated that PROTREC is able to perform well independently without any help from a p-value-based method. Furthermore, we conducted a downstream enrichment analysis to understand the biological pathways and protein networks within the cancerous tissues using the recovered proteins. Missing protein recovery rate using PROTREC can be improved by selecting a different PROTREC score selection method. Different PROTREC score selection methods and other hyper-parameters such as PROTREC score threshold and complex size threshold introduce accuracy-quantity trade-off. PROTREC is able to perform well independently of any filtering using a p-value-based method. Verification of the PROTREC method on additional cancer datasets. Downstream Enrichment Analysis to understand the biological pathways and protein networks in cancerous tissues.


Assuntos
Algoritmos , Neoplasias , Humanos
2.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37419612

RESUMO

Missing values (MVs) can adversely impact data analysis and machine-learning model development. We propose a novel mixed-model method for missing value imputation (MVI). This method, ProJect (short for Protein inJection), is a powerful and meaningful improvement over existing MVI methods such as Bayesian principal component analysis (PCA), probabilistic PCA, local least squares and quantile regression imputation of left-censored data. We rigorously tested ProJect on various high-throughput data types, including genomics and mass spectrometry (MS)-based proteomics. Specifically, we utilized renal cancer (RC) data acquired using DIA-SWATH, ovarian cancer (OC) data acquired using DIA-MS, bladder (BladderBatch) and glioblastoma (GBM) microarray gene expression dataset. Our results demonstrate that ProJect consistently performs better than other referenced MVI methods. It achieves the lowest normalized root mean square error (on average, scoring 45.92% less error in RC_C, 27.37% in RC_full, 29.22% in OC, 23.65% in BladderBatch and 20.20% in GBM relative to the closest competing method) and the Procrustes sum of squared error (Procrustes SS) (exhibits 79.71% less error in RC_C, 38.36% in RC full, 18.13% in OC, 74.74% in BladderBatch and 30.79% in GBM compared to the next best method). ProJect also leads with the highest correlation coefficient among all types of MV combinations (0.64% higher in RC_C, 0.24% in RC full, 0.55% in OC, 0.39% in BladderBatch and 0.27% in GBM versus the second-best performing method). ProJect's key strength is its ability to handle different types of MVs commonly found in real-world data. Unlike most MVI methods that are designed to handle only one type of MV, ProJect employs a decision-making algorithm that first determines if an MV is missing at random or missing not at random. It then employs targeted imputation strategies for each MV type, resulting in more accurate and reliable imputation outcomes. An R implementation of ProJect is available at https://github.com/miaomiao6606/ProJect.


Assuntos
Algoritmos , Genômica , Teorema de Bayes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Espectrometria de Massas/métodos
3.
J Bioinform Comput Biol ; 21(1): 2350005, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891972

RESUMO

Some prediction methods use probability to rank their predictions, while some other prediction methods do not rank their predictions and instead use [Formula: see text]-values to support their predictions. This disparity renders direct cross-comparison of these two kinds of methods difficult. In particular, approaches such as the Bayes Factor upper Bound (BFB) for [Formula: see text]-value conversion may not make correct assumptions for this kind of cross-comparisons. Here, using a well-established case study on renal cancer proteomics and in the context of missing protein prediction, we demonstrate how to compare these two kinds of prediction methods using two different strategies. The first strategy is based on false discovery rate (FDR) estimation, which does not make the same naïve assumptions as BFB conversions. The second strategy is a powerful approach which we colloquially call "home ground testing". Both strategies perform better than BFB conversions. Thus, we recommend comparing prediction methods by standardization to a common performance benchmark such as a global FDR. And where this is not possible, we recommend reciprocal "home ground testing".


Assuntos
Proteínas , Proteômica , Teorema de Bayes , Probabilidade
4.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36907650

RESUMO

Proteomic studies characterize the protein composition of complex biological samples. Despite recent advancements in mass spectrometry instrumentation and computational tools, low proteome coverage and interpretability remains a challenge. To address this, we developed Proteome Support Vector Enrichment (PROSE), a fast, scalable and lightweight pipeline for scoring proteins based on orthogonal gene co-expression network matrices. PROSE utilizes simple protein lists as input, generating a standard enrichment score for all proteins, including undetected ones. In our benchmark with 7 other candidate prioritization techniques, PROSE shows high accuracy in missing protein prediction, with scores correlating strongly to corresponding gene expression data. As a further proof-of-concept, we applied PROSE to a reanalysis of the Cancer Cell Line Encyclopedia proteomics dataset, where it captures key phenotypic features, including gene dependency. We lastly demonstrated its applicability on a breast cancer clinical dataset, showing clustering by annotated molecular subtype and identification of putative drivers of triple-negative breast cancer. PROSE is available as a user-friendly Python module from https://github.com/bwbio/PROSE.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/análise
5.
PLoS Comput Biol ; 19(3): e1010961, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930671

RESUMO

In mass spectrometry (MS)-based proteomics, protein inference from identified peptides (protein fragments) is a critical step. We present ProInfer (Protein Inference), a novel protein assembly method that takes advantage of information in biological networks. ProInfer assists recovery of proteins supported only by ambiguous peptides (a peptide which maps to more than one candidate protein) and enhances the statistical confidence for proteins supported by both unique and ambiguous peptides. Consequently, ProInfer rescues weakly supported proteins thereby improving proteome coverage. Evaluated across THP1 cell line, lung cancer and RAW267.4 datasets, ProInfer always infers the most numbers of true positives, in comparison to mainstream protein inference tools Fido, EPIFANY and PIA. ProInfer is also adept at retrieving differentially expressed proteins, signifying its usefulness for functional analysis and phenotype profiling. Source codes of ProInfer are available at https://github.com/PennHui2016/ProInfer.


Assuntos
Algoritmos , Peptídeos , Peptídeos/química , Proteoma/análise , Espectrometria de Massas , Proteômica/métodos , Bases de Dados de Proteínas , Software
6.
Comput Biol Chem ; 104: 107845, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889140

RESUMO

The robustness of a breast cancer gene signature, the super-proliferation set (SPS), is initially tested and investigated on breast cancer cell lines from the Cancer Cell Line Encyclopaedia (CCLE). Previously, SPS was derived via a meta-analysis of 47 independent breast cancer gene signatures, benchmarked on survival information from clinical data in the NKI dataset. Here, relying on the stability of cell line data and associative prior knowledge, we first demonstrate through Principal Component Analysis (PCA) that SPS prioritizes survival information over secondary subtype information, surpassing both PAM50 and Boruta, an artificial intelligence-based feature-selection algorithm, in this regard. We can also extract higher resolution 'progression' information using SPS, dividing survival outcomes into several clinically relevant stages ('good', 'intermediate', and 'bad) based on different quadrants of the PCA scatterplot. Furthermore, by transferring these 'progression' annotations onto independent clinical datasets, we demonstrate the generalisability of our method on actual patient data. Finally, via the characteristic genetic profiles of each quadrant/stage, we identified efficacious drugs using their gene reversal scores that can shift signatures across quadrants/stages, in a process known as gene signature reversal. This confirms the power of meta-analytical approaches for gene signature inference in breast cancer, as well as the clinical benefit in translating these inferences onto real-world patient data for more targeted therapies.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Perfilação da Expressão Gênica/métodos , Algoritmos , Neoplasias da Mama/genética
7.
BMC Biol ; 20(1): 222, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199058

RESUMO

BACKGROUND: Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS: We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION: AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.


Assuntos
Progesterona , Receptores de Progesterona , Animais , Cromatina/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Furilfuramida/metabolismo , Furilfuramida/farmacologia , Camundongos , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Útero/metabolismo
8.
Comput Struct Biotechnol J ; 20: 4369-4375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051874

RESUMO

Mass-spectrometry-based proteomics presents some unique challenges for batch effect correction. Batch effects are technical sources of variation, can confound analysis and usually non-biological in nature. As proteomic analysis involves several stages of data transformation from spectra to protein, the decision on when and what to apply batch correction on is often unclear. Here, we explore several relevant issues pertinent to batch effect correct considerations. The first involves applications of batch effect correction requiring prior knowledge on batch factors and exploring data to uncover new/unknown batch factors. The second considers recent literature that suggests there is no single best batch effect correction algorithm---i.e., instead of a best approach, one may instead ask, what is a suitable approach. The third section considers issues of batch effect detection. And finally, we look at potential developments for proteomic-specific batch effect correction methods and how to do better functional evaluations on batch corrected data.

9.
Sci Rep ; 12(1): 11358, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790756

RESUMO

Despite technological advances in proteomics, incomplete coverage and inconsistency issues persist, resulting in "data holes". These data holes cause the missing protein problem (MPP), where relevant proteins are persistently unobserved, or sporadically observed across samples, hindering biomarker discovery and proper functional characterization. Network-based approaches can provide powerful solutions for resolving these issues. Functional Class Scoring (FCS) is one such method that uses protein complex information to recover missing proteins with weak support. However, FCS has not been evaluated on more recent proteomic technologies with higher coverage, and there is no clear way to evaluate its performance. To address these issues, we devised a more rigorous evaluation schema based on cross-verification between technical replicates and evaluated its performance on data acquired under recent Data-Independent Acquisition (DIA) technologies (viz. SWATH). Although cross-replicate examination reveals some inconsistencies amongst same-class samples, tissue-differentiating signal is nonetheless strongly conserved, confirming that FCS selects for biologically meaningful networks. We also report that predicted missing proteins are statistically significant based on FCS p values. Despite limited cross-replicate verification rates, the predicted missing proteins as a whole have higher peptide support than non-predicted proteins. FCS also predicts missing proteins that are often lost due to weak specific peptide support.


Assuntos
Pesquisa Biomédica , Proteômica , Peptídeos , Proteínas/química , Proteômica/métodos , Projetos de Pesquisa
10.
J Proteomics ; 206: 103446, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31323421

RESUMO

Cancer is a heterogeneous disease, confounding the identification of relevant markers and drug targets. Network-based analysis is robust against noise, potentially offering a promising approach towards biomarker identification. We describe here the application of two network-based methods, qPSP (Quantitative Proteomics Signature Profiling) and PFSNet (Paired Fuzzy SubNetworks), in an intra-tissue proteome data set of prostate tissue samples. Despite high basal variation, we find that traditional statistical analysis may exaggerate the extent of heterogeneity. We also report that network-based analysis outperforms protein-based feature selection with concomitantly higher cross-validation accuracy. Overall, network-based analysis provides emergent signal that boosts sensitivity while retaining good precision. It is a potential means of circumventing heterogeneity for stable biomarker discovery.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Redes Reguladoras de Genes/fisiologia , Heterogeneidade Genética , Humanos , Masculino , Proteínas de Neoplasias/análise , Ligação Proteica , Mapas de Interação de Proteínas/fisiologia , Proteoma/análise , Proteômica/métodos , Transdução de Sinais/fisiologia , Biologia de Sistemas
11.
J Bioinform Comput Biol ; 17(2): 1950013, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31057071

RESUMO

Functional Class Scoring (FCS) is a network-based approach previously demonstrated to be powerful in missing protein prediction (MPP). We update its performance evaluation using data derived from new proteomics technology (SWATH) and also checked for reproducibility using two independent datasets profiling kidney tissue proteome. We also evaluated the objectivity of the FCS p-value, and followed up on the value of MPP from predicted complexes. Our results suggest that (1) FCS p -values are non-objective, and are confounded strongly by complex size, (2) best recovery performance do not necessarily lie at standard p -value cutoffs, (3) while predicted complexes may be used for augmenting MPP, they are inferior to real complexes, and are further confounded by issues relating to network coverage and quality and (4) moderate sized complexes of size 5 to 10 still exhibit considerable instability, we find that FCS works best with big complexes. While FCS is a powerful approach, blind reliance on its non-objective p -value is ill-advised.


Assuntos
Biologia Computacional/métodos , Proteômica/métodos , Algoritmos , Bases de Dados de Proteínas , Humanos , Rim/metabolismo , Neoplasias Renais/metabolismo , Complexos Multiproteicos , Mapas de Interação de Proteínas , Proteômica/estatística & dados numéricos , Reprodutibilidade dos Testes
12.
Brief Bioinform ; 20(1): 347-355, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657890

RESUMO

Mass spectrometry (MS)-based proteomics has undergone rapid advancements in recent years, creating challenging problems for bioinformatics. We focus on four aspects where bioinformatics plays a crucial role (and proteomics is needed for clinical application): peptide-spectra matching (PSM) based on the new data-independent acquisition (DIA) paradigm, resolving missing proteins (MPs), dealing with biological and technical heterogeneity in data and statistical feature selection (SFS). DIA is a brute-force strategy that provides greater width and depth but, because it indiscriminately captures spectra such that signal from multiple peptides is mixed, getting good PSMs is difficult. We consider two strategies: simplification of DIA spectra to pseudo-data-dependent acquisition spectra or, alternatively, brute-force search of each DIA spectra against known reference libraries. The MP problem arises when proteins are never (or inconsistently) detected by MS. When observed in at least one sample, imputation methods can be used to guess the approximate protein expression level. If never observed at all, network/protein complex-based contextualization provides an independent prediction platform. Data heterogeneity is a difficult problem with two dimensions: technical (batch effects), which should be removed, and biological (including demography and disease subpopulations), which should be retained. Simple normalization is seldom sufficient, while batch effect-correction algorithms may create errors. Batch effect-resistant normalization methods are a viable alternative. Finally, SFS is vital for practical applications. While many methods exist, there is no best method, and both upstream (e.g. normalization) and downstream processing (e.g. multiple-testing correction) are performance confounders. We also discuss signal detection when class effects are weak.


Assuntos
Biologia Computacional/métodos , Proteômica/estatística & dados numéricos , Algoritmos , Biologia Computacional/estatística & dados numéricos , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Peptídeos/química , Proteínas/química , Software , Espectrometria de Massas em Tandem/estatística & dados numéricos
13.
Drug Discov Today ; 24(1): 31-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081096

RESUMO

Reproducible and generalizable gene signatures are essential for clinical deployment, but are hard to come by. The primary issue is insufficient mitigation of confounders: ensuring that hypotheses are appropriate, test statistics and null distributions are appropriate, and so on. To further improve robustness, additional good analytical practices (GAPs) are needed, namely: leveraging existing data and knowledge; careful and systematic evaluation of gene sets, even if they overlap with known sources of confounding; and rigorous testing of inferred signatures against as many published data sets as possible. Here, using a re-examination of a breast cancer data set and 48 published signatures, we illustrate the value of adopting these GAPs.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fatores de Confusão Epidemiológicos , Feminino , Humanos , Metanálise como Assunto
14.
Mol Cancer ; 17(1): 152, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342537

RESUMO

Overcoming multidrug resistance has always been a major challenge in cancer treatment. Recent evidence suggested epithelial-mesenchymal transition plays a role in MDR, but the mechanism behind this link remains unclear. We found that the expression of multiple ABC transporters was elevated in concordance with an increased drug efflux in cancer cells during EMT. The metastasis-related angiopoietin-like 4 (ANGPTL4) elevates cellular ATP to transcriptionally upregulate ABC transporters expression via the Myc and NF-κB signaling pathways. ANGPTL4 deficiency reduced IC50 of anti-tumor drugs and enhanced apoptosis of cancer cells. In vivo suppression of ANGPTL4 led to higher accumulation of cisplatin-DNA adducts in primary and metastasized tumors, and a reduced metastatic tumor load. ANGPTL4 empowered cancer cells metabolic flexibility during EMT, securing ample cellular energy that fuels multiple ABC transporters to confer EMT-mediated chemoresistance. It suggests that metabolic strategies aimed at suppressing ABC transporters along with energy deprivation of EMT cancer cells may overcome drug resistance.


Assuntos
Proteína 4 Semelhante a Angiopoietina/antagonistas & inibidores , Proteína 4 Semelhante a Angiopoietina/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Drug Discov Today ; 23(11): 1818-1823, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29864526

RESUMO

Random signature superiority (RSS) occurs when random gene signatures outperform published and/or known signatures. Unlike reproducibility and generalizability issues, RSS is relatively underexplored. Yet, understanding it is imperative for better analytical outcome. In breast cancer, RSS correlates strongly with enrichment for proliferation genes and signature size. Removal of proliferation genes from random signatures reduces the predictive power of random signatures. Almost all genes are correlated to a certain extent with the proliferation signature, making complete elimination of its confounding effects impossible. RSS goes beyond breast cancer, because it also exists in other diseases; it is especially strong in other cancers in a platform-independent manner, and less severe, but present nonetheless, in nonproliferative diseases.


Assuntos
Biomarcadores Tumorais/genética , Bioestatística , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Humanos
16.
BMC Genomics ; 18(Suppl 2): 142, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28361693

RESUMO

BACKGROUND: In proteomics, batch effects are technical sources of variation that confounds proper analysis, preventing effective deployment in clinical and translational research. RESULTS: Using simulated and real data, we demonstrate existing batch effect-correction methods do not always eradicate all batch effects. Worse still, they may alter data integrity, and introduce false positives. Moreover, although Principal component analysis (PCA) is commonly used for detecting batch effects. The principal components (PCs) themselves may be used as differential features, from which relevant differential proteins may be effectively traced. Batch effect are removable by identifying PCs highly correlated with batch but not class effect. However, neither PC-based nor existing batch effect-correction methods address well subtle batch effects, which are difficult to eradicate, and involve data transformation and/or projection which is error-prone. To address this, we introduce the concept of batch-effect resistant methods and demonstrate how such methods incorporating protein complexes are particularly resistant to batch effect without compromising data integrity. CONCLUSIONS: Protein complex-based analyses are powerful, offering unparalleled differential protein-selection reproducibility and high prediction accuracy. We demonstrate for the first time their innate resistance against batch effects, even subtle ones. As complex-based analyses require no prior data transformation (e.g. batch-effect correction), data integrity is protected. Individual checks on top-ranked protein complexes confirm strong association with phenotype classes and not batch. Therefore, the constituent proteins of these complexes are more likely to be clinically relevant.


Assuntos
Neoplasias Renais/química , Proteínas de Neoplasias/química , Análise de Componente Principal , Proteômica/estatística & dados numéricos , Análise por Conglomerados , Humanos , Ligação Proteica , Multimerização Proteica , Proteômica/métodos , Reprodutibilidade dos Testes , Manejo de Espécimes/normas
17.
Curr Pharm Des ; 23(14): 2060-2064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28176668

RESUMO

The human cytochrome P450 (CYP) enzyme CYP4Z1 is a fatty acid hydroxylase which among human CYPs is unique for being much stronger expressed in the mammary gland than in all other tissues. Moreover, it is strongly overexpressed in all subtypes of breast cancer, and some overexpression has also been found in other types of malignancies, such as ovarian, lung, and prostate cancers, respectively. Due to its unique expression pattern it is conceivable that this enzymes' activity might be exploited for a new therapeutic approach. However, the main challenge for a CYP4Z1-based prodrug strategy (CBPS) for the treatment of breast cancer (and possibly other CYP4Z1-positive malignancies) is the identification of candidate prodrugs that can be activated by this enzyme. In this mini-review we summarize the current knowledge about the enzymatic properties of the CYP4Z1 enzyme as well as on the expression pattern of the CYP4Z1 gene in both normal and cancer cells. Moreover, we present the first homology model of this enzyme and give an outlook on its potential use in cancer treatment strategies.


Assuntos
Neoplasias da Mama/metabolismo , Família 4 do Citocromo P450/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Família 4 do Citocromo P450/antagonistas & inibidores , Família 4 do Citocromo P450/genética , Feminino , Humanos , Pró-Fármacos/farmacologia
18.
J Bioinform Comput Biol ; 14(5): 1644004, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27806684

RESUMO

In proteomics, useful signal may be unobserved or lost due to the lack of confident peptide-spectral matches. Selection of differential spectra, followed by associative peptide/protein mapping may be a complementary strategy for improving sensitivity and comprehensiveness of analysis (spectra-first paradigm). This approach is complementary to the standard approach where functional analysis is performed only on the finalized protein list assembled from identified peptides from the spectra (protein-first paradigm). Based on a case study of renal cancer, we introduce a simple spectra-binning approach, MZ-bin. We demonstrate that differential spectra feature selection using MZ-bin is class-discriminative and can trace relevant proteins via spectra associative mapping. Moreover, proteins identified in this manner are more biologically coherent than those selected directly from the finalized protein list. Analysis of constituent peptides per protein reveals high expression inconsistency, suggesting that the measured protein expressions are in fact, poor approximations of true protein levels. Moreover, analysis at the level of constituent peptides may provide higher resolution insight into the underlying biology: Via MZ-bin, we identified for the first time differential splice forms for the known renal cancer marker MAPT. We conclude that the spectra-first analysis paradigm is a complementary strategy to the traditional protein-first paradigm and can provide deeper level insight.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Renais/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Biomarcadores Tumorais/análise , Reações Falso-Positivas , Heurística , Humanos , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Peptídeos/metabolismo , Isoformas de Proteínas , Reprodutibilidade dos Testes
19.
Nat Commun ; 7: 12849, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796300

RESUMO

Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.


Assuntos
Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Transcrição STAT1/metabolismo , ADP-Ribosilação , Animais , Apoptose , Aterosclerose , Sobrevivência Celular , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-4/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Placa Aterosclerótica/metabolismo , Células RAW 264.7 , Interferência de RNA , Ribose/química , Células THP-1
20.
J Bioinform Comput Biol ; 14(5): 1650029, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27640811

RESUMO

Identifying reproducible yet relevant features is a major challenge in biological research. This is well documented in genomics data. Using a proposed set of three reliability benchmarks, we find that this issue exists also in proteomics for commonly used feature-selection methods, e.g. [Formula: see text]-test and recursive feature elimination. Moreover, due to high test variability, selecting the top proteins based on [Formula: see text]-value ranks - even when restricted to high-abundance proteins - does not improve reproducibility. Statistical testing based on networks are believed to be more robust, but this does not always hold true: The commonly used hypergeometric enrichment that tests for enrichment of protein subnets performs abysmally due to its dependence on unstable protein pre-selection steps. We demonstrate here for the first time the utility of a novel suite of network-based algorithms called ranked-based network algorithms (RBNAs) on proteomics. These have originally been introduced and tested extensively on genomics data. We show here that they are highly stable, reproducible and select relevant features when applied to proteomics data. It is also evident from these results that use of statistical feature testing on protein expression data should be executed with due caution. Careless use of networks does not resolve poor-performance issues, and can even mislead. We recommend augmenting statistical feature-selection methods with concurrent analysis on stability and reproducibility to improve the quality of the selected features prior to experimental validation.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteômica/métodos , Neoplasias Colorretais/metabolismo , Bases de Dados de Proteínas , Humanos , Neoplasias Renais/metabolismo , Aprendizado de Máquina , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA