Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 61(17): 7700-7709, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30091915

RESUMO

There are currently no FDA-approved therapies to prevent the hearing loss associated with the usage of cisplatin in chemotherapeutic regimens. We recently demonstrated that the pharmacologic inhibition with kenpaullone or genetic deletion of CDK2 preserved hearing function in animal models treated with cisplatin, which suggests that CDK2 is a promising therapeutic target to prevent cisplatin-induced ototoxicity. In this study, we identified two lead compounds, AT7519 and AZD5438, from a focused library screen of 187 CDK2 inhibitors, performed in an immortalized cell line derived from neonatal mouse cochleae treated with cisplatin. Moreover, we screened 36 analogues of AT7519 and identified analogue 7, which exhibited an improved therapeutic index. When delivered locally, analogue 7 and AZD5438 both provided significant protection against cisplatin-induced ototoxicity in mice. Thus, we have identified two additional compounds that prevent cisplatin-induced ototoxicity in vivo and provided further evidence that CDK2 is a druggable target for treating cisplatin-induced ototoxicity.


Assuntos
Cisplatino/efeitos adversos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Perda Auditiva/induzido quimicamente , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/efeitos adversos , Cóclea/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Perda Auditiva/prevenção & controle , Humanos , Imidazóis/química , Imidazóis/farmacologia , Camundongos Endogâmicos , Técnicas de Cultura de Órgãos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
2.
J Exp Med ; 215(4): 1187-1203, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29514916

RESUMO

Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.


Assuntos
Cisplatino/efeitos adversos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Perda Auditiva Provocada por Ruído/induzido quimicamente , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/metabolismo , Citoproteção/efeitos dos fármacos , Resistência a Medicamentos , Células Germinativas/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Indóis/farmacologia , Indóis/uso terapêutico , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Peixe-Zebra
3.
Assay Drug Dev Technol ; 15(8): 383-394, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29112465

RESUMO

Human pregnane X receptor (hPXR) is a nuclear receptor that regulates the expression of phase I and phase II drug-metabolism enzymes, as well as that of drug transporters. hPXR is a "xenobiotics sensor" and can be activated by structurally diverse compounds. The activation of hPXR by its agonists increases the clearance of xenobiotics by increasing the expression of drug-metabolism enzymes and drug transporters, possibly leading to drug toxicity, drug resistance, and other adverse drug reactions. Therefore, hPXR antagonists might attenuate agonist-mediated activation of hPXR and reduce the risk of adverse drug reactions. Several hPXR antagonists have been reported, but none of them is specific for hPXR. In this study, we present the first large-scale, unbiased, cell-based high-throughput screen to identify specific hPXR antagonists. Among the 132,975 compounds screened, we identified the 1,4,5-substituted 1,2,3-triazole analogs as potent and specific hPXR antagonists by sequentially performing primary screening, retesting, and dose-response analysis using cell-based hPXR gene reporter and receptor binding assays, as well as receptor and promoter specificity assays. The compound SJ000076745-1 is the most potent and specific hPXR antagonist in the 1,4,5-substituted 1,2,3-triazole chemical class, having a cell-based hPXR antagonist 50% inhibitory concentration (IC50) value of 377 ± 16 nM and an hPXR binding inhibitory IC50 value of 563 ± 40 nM.


Assuntos
Ensaios de Triagem em Larga Escala , Receptores de Esteroides/antagonistas & inibidores , Triazóis/análise , Triazóis/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Receptor de Pregnano X , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Methods Mol Biol ; 1427: 419-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27259939

RESUMO

Various compounds have been tested in recent years for protection against cisplatin-induced hearing loss, but no compound has yet been FDA approved for clinical use in patients. Towards this goal, we developed an unbiased, high-throughput, mammalian cochlear cell-based chemical screen that allowed quantification of the protection ability of bioactive compounds and ranked them for future testing ex vivo in cochlear explant cultures and in vivo in animal models. In our primary screens, protection in the HEI-OC1 organ of Corti immortalized cell line was measured by the ability of each compound to inhibit caspase-3/7 activity triggered by cisplatin treatment (50 µM cisplatin for 22 h). A total of 4385 unique bioactive compounds were tested in a single dose of 8 µM and promising compounds were validated by dose response curves covering ten, 1:3 serial diluted concentrations. Primary hits were defined as having more than 60 % inhibition of the caspase-3/7 activity. Toxicity of the top compounds was measured by a CellTiter-Glo (CTG) assay that measured the viability of the cells in the presence of compound alone in similar dose responsive analysis. A combination of the caspase-3/7 inhibition activity assay (as measured by IC50) and the CTG viability assay (as determined by LD50) identified the top protective compounds in the HEI-OC1 cells. In the future, the top hits in our screens will be tested for their protective ability ex vivo in mouse cochlear explants and in vivo in animal models. Our mammalian cochlear cell-based, high-throughput chemical screening assays described here can be further modified and represent an initial successful step towards therapeutic intervention of hearing disorders, an unmet medical need of our society.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Órgão Espiral/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Órgão Espiral/citologia , Órgão Espiral/metabolismo
5.
Biochem J ; 459(1): 193-203, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24438055

RESUMO

The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Receptores de Esteroides/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Células Cultivadas , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Receptor de Pregnano X , Estabilidade Proteica , Receptores de Esteroides/química , Ubiquitinação/fisiologia , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA