Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(1): 324-338, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34499172

RESUMO

Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd- and Fe-associated responses in wild-type Arabidopsis and in a mutant that overaccumulates Fe (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in the wild type but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2, we propose a model where reactive oxygen species prevent the induction of genes that are induced in the wild type by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely to be the result of an impaired Fe sensing. Overall, our data suggest that Fe deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


Assuntos
Proteínas de Arabidopsis , Cádmio , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Ferro/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio
2.
Biomolecules ; 11(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439786

RESUMO

The global increase in cancer mortality and economic losses necessitates the cautious quest for therapeutic agents with compensatory advantages over conventional therapies. Anticancer peptides (ACPs) are a subset of host defense peptides, also known as antimicrobial peptides, which have emerged as therapeutic and diagnostic candidates due to several compensatory advantages over the non-specificity of the current treatment regimens. This review aimed to highlight the ravaging incidence of cancer, the use of ACPs in cancer treatment with their mechanisms, ACP discovery and delivery methods, and the limitations for their use. This would create awareness for identifying more ACPs with better specificity, accuracy and sensitivity towards the disease. It would also promote their efficacious utilization in biotechnology, medical sciences and molecular biology to ease the severity of the disease and enable the patients living with these conditions to develop an accommodating lifestyle.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antineoplásicos/uso terapêutico , Membrana Celular/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Descoberta de Drogas/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209014

RESUMO

Elevated concentrations of heavy metals such as cadmium (Cd) have a negative impact on staple crop production due to their ability to elicit cytotoxic and genotoxic effects on plants. In order to understand the relationship between Cd stress and plants in an effort to improve Cd tolerance, studies have identified genetic mechanisms which could be important for conferring stress tolerance. In recent years epigenetic studies have garnered much attention and hold great potential in both improving the understanding of Cd stress in plants as well as revealing candidate mechanisms for future work. This review describes some of the main epigenetic mechanisms involved in Cd stress responses. We summarize recent literature and data pertaining to chromatin remodeling, DNA methylation, histone acetylation and miRNAs in order to understand the role these epigenetic traits play in cadmium tolerance. The review aims to provide the framework for future studies where these epigenetic traits may be used in plant breeding and molecular studies in order to improve Cd tolerance.


Assuntos
Cádmio/toxicidade , Produtos Agrícolas/crescimento & desenvolvimento , Resistência a Medicamentos , Epigênese Genética/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética
4.
J Exp Bot ; 70(16): 4197-4210, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31231775

RESUMO

Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and allocate resources accordingly. Iron-sulfur (Fe-S) clusters are at the center of photosynthesis, respiration, amino acid, and DNA metabolism. Fe-S clusters are extraordinary catalysts, but their main components (Fe2+ and S2-) are highly reactive and potentially toxic. To prevent toxicity, plants have evolved mechanisms to regulate the uptake, storage, and assimilation of Fe and S. Recent advances have been made in understanding the cellular economy of Fe and S metabolism individually, and growing evidence suggests that there is dynamic crosstalk between Fe and S networks. In this review, we summarize and discuss recent literature on Fe sensing, allocation, use efficiency, and, when pertinent, its relationship to S metabolism. Our future perspectives include a discussion about the open questions and challenges ahead and how the plant nutrition field can come together to approach these questions in a cohesive and more efficient way.


Assuntos
Ferro/metabolismo , Plantas/metabolismo , Enxofre/metabolismo , Crescimento e Desenvolvimento , Minerais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
5.
Sci Rep ; 8(1): 12628, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135488

RESUMO

Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content.


Assuntos
Óxido Nítrico Sintase/metabolismo , Zea mays/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Betaína/metabolismo , Catalase/metabolismo , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Nitroprussiato/farmacologia , Folhas de Planta/metabolismo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA