Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151945

RESUMO

Ineffective endometrial matrix remodeling, a key factor in infertility, impedes embryo implantation in the uterine wall. Our study reveals the cellular and molecular impact of human collagenase-1 administration in mouse uteri, demonstrating enhanced embryo implantation rates. Collagenase-1 promotes remodeling of the endometrial ECM, degrading collagen fibers and proteoglycans. This process releases matrix-bound bioactive factors (e.g., VEGF, decorin), facilitating vascular permeability and angiogenesis. Collagenase-1 elevates embryo implantation regulators, including NK cell infiltration and the key cytokine LIF. Remarkably, uterine tissue maintains structural integrity despite reduced endometrial collagen fiber tension. In-utero collagenase-1 application rescues implantation in heat stress and embryo transfer models, known for low implantation rates. Importantly, ex vivo exposure of human uterine tissue to collagenase-1 induces collagen de-tensioning and VEGF release, mirroring remodeling observed in mice. Our research highlights the potential of collagenases to induce and orchestrate cellular and molecular processes enhancing uterine receptivity for effective embryo implantation. This innovative approach underscores ECM remodeling mechanisms critical for embryo implantation.


Assuntos
Colagenases , Implantação do Embrião , Útero , Feminino , Animais , Camundongos , Colagenases/metabolismo , Humanos , Útero/metabolismo , Matriz Extracelular/metabolismo , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gravidez , Transferência Embrionária/métodos , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
2.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077050

RESUMO

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.

3.
Nature ; 622(7981): 164-172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674082

RESUMO

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Assuntos
Tolerância a Antígenos Próprios , Linfócitos T , Timo , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Tolerância a Antígenos Próprios/imunologia , Tolerância a Antígenos Próprios/fisiologia , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Tecido Parenquimatoso , Células Musculares , Células Endócrinas , Cromatina , Transcrição Gênica , Grelina
4.
Front Microbiol ; 14: 1240798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692390

RESUMO

Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.

5.
Mater Today Bio ; 20: 100669, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37334185

RESUMO

Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.

6.
Front Immunol ; 13: 849701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911772

RESUMO

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Assuntos
Neoplasias Pulmonares , Linfócitos T Citotóxicos , Animais , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Microambiente Tumoral
7.
Nat Commun ; 13(1): 2800, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589715

RESUMO

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Neoplasias Colorretais/genética , Genes p53 , Humanos , Mutação , Fenótipo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35449415

RESUMO

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Assuntos
Neoplasias , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Neoplasias/genética , Análise de Célula Única/métodos , Software , Transcriptoma/genética , Sequenciamento do Exoma
9.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35305314

RESUMO

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Assuntos
Anticorpos Antineoplásicos , Neoplasias Ovarianas , Anticorpos Monoclonais , Autoanticorpos , Autoantígenos , Feminino , Humanos , Neoplasias Ovarianas/genética , Microambiente Tumoral
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088837

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Assuntos
Carcinoma Ductal Pancreático/genética , Fibrose , Mutação de Sentido Incorreto , Neoplasias Pancreáticas/genética , Proteína Supressora de Tumor p53/genética , Animais , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
11.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
12.
Nat Commun ; 11(1): 6245, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288768

RESUMO

In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.


Assuntos
Neoplasias Associadas a Colite/metabolismo , Matriz Extracelular/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Associadas a Colite/genética , Modelos Animais de Doenças , Fatores de Transcrição de Choque Térmico/genética , Humanos , Espectrometria de Massas/métodos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteoma/genética
13.
Gastroenterology ; 159(5): 1807-1823, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653496

RESUMO

BACKGROUND & AIMS: The intestinal barrier protects intestinal cells from microbes and antigens in the lumen-breaches can alter the composition of the intestinal microbiota, the enteric immune system, and metabolism. We performed a screen to identify molecules that disrupt and support the intestinal epithelial barrier and tested their effects in mice. METHODS: We performed an imaging-based, quantitative, high-throughput screen (using CaCo-2 and T84 cells incubated with lipopolysaccharide; tumor necrosis factor; histamine; receptor antagonists; and libraries of secreted proteins, microbial metabolites, and drugs) to identify molecules that altered epithelial tight junction (TJ) and focal adhesion morphology. We then tested the effects of TJ stabilizers on these changes. Molecules we found to disrupt or stabilize TJs were administered mice with dextran sodium sulfate-induced colitis or Citrobacter rodentium-induced intestinal inflammation. Colon tissues were collected and analyzed by histology, fluorescence microscopy, and RNA sequencing. RESULTS: The screen identified numerous compounds that disrupted or stabilized (after disruption) TJs and monolayers of epithelial cells. We associated distinct morphologic alterations with changes in barrier function, and identified a variety of cytokines, metabolites, and drugs (including inhibitors of actomyosin contractility) that prevent disruption of TJs and restore TJ integrity. One of these disruptors (putrescine) disrupted TJ integrity in ex vivo mouse colon tissues; administration to mice exacerbated colon inflammation, increased gut permeability, reduced colon transepithelial electrical resistance, increased pattern recognition receptor ligands in mesenteric lymph nodes, and decreased colon length and survival times. Putrescine also increased intestine levels and fecal shedding of viable C rodentium, increased bacterial attachment to the colonic epithelium, and increased levels of inflammatory cytokines in colon tissues. Colonic epithelial cells from mice given putrescine increased expression of genes that regulate metal binding, oxidative stress, and cytoskeletal organization and contractility. Co-administration of taurine with putrescine blocked disruption of TJs and the exacerbated inflammation. CONCLUSIONS: We identified molecules that disrupt and stabilize intestinal epithelial TJs and barrier function and affect development of colon inflammation in mice. These agents might be developed for treatment of barrier intestinal impairment-associated and inflammatory disorders in patients, or avoided to prevent inflammation.


Assuntos
Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Ensaios de Triagem em Larga Escala , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Animais , Células CACO-2 , Citrobacter rodentium/patogenicidade , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Putrescina/farmacologia , Taurina/farmacologia , Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Junções Íntimas/patologia
14.
Br J Cancer ; 123(2): 216-225, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390007

RESUMO

BACKGROUND: The extracellular matrix modulates the development of ovarian tumours. Currently, evaluation of the extracellular matrix in the ovary is limited to histological methods. Both magnetic resonance imaging (MRI) and two-photon microscopy (2PM) enable dynamic visualisation and quantification of fibrosis by endogenous contrast mechanisms: magnetisation transfer (MT) MRI and second-harmonic generation (SHG) 2PM, respectively. METHODS: Here, we applied the MT-MRI protocol for longitudinal imaging of the stroma in orthotopic human ovarian cancer ES-2 xenograft model in CD1 athymic nude mice, and for orthotopically implanted ovarian PDX using a MR-compatible imaging window chamber implanted into NSG mice. RESULTS: We observed differences between ECM deposition in ovarian and skin lesions, and heterogeneous collagen distribution in ES-2 lesions. An MR-compatible imaging window chamber enabled visual matching between T2 MRI maps of orthotopically implanted PDX grafts and anatomical images of their microenvironment acquired with a stereomicroscope and SHG-2PM intravital microscopy of the collagen. Bimodal MRI/2PM imaging allowed us to quantify the fibrosis within the same compartments, and demonstrated the consistent results across the modalities. CONCLUSIONS: This work demonstrates a novel approach for measuring the stromal biomarkers in orthotopic ovarian tumours in mice, on both macroscopic and microscopic levels.


Assuntos
Imageamento por Ressonância Magnética , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Ovário/patologia , Microambiente Tumoral/genética
15.
Science ; 368(6494): 973-980, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32467386

RESUMO

Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients' smoking status, and the response to immunotherapy.


Assuntos
Bactérias/classificação , Microbiota , Neoplasias/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Mama/microbiologia , Colo/microbiologia , Feminino , Humanos , Imunoterapia , Pulmão/microbiologia , Macrófagos/microbiologia , Masculino , Neoplasias/terapia , Ovário/microbiologia , RNA Ribossômico 16S/genética
16.
Life Sci Alliance ; 3(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132179

RESUMO

Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Neovascularização Fisiológica/fisiologia , Fator C de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Moduladores da Angiogênese/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Morfogênese , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
17.
Int J Cancer ; 146(8): 2209-2217, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31661557

RESUMO

Pancreatic cancers, both adenocarcinomas and endocrine tumors are characterized by varying levels of aberrant angiogenesis and fibrotic microenvironment. The difficulty to deliver drugs and treat the disease has been attributed in part to the vascular architecture and tissue/ECM density. Here we present longitudinal three-dimensional intravital imaging of vascular and tumor microenvironment remodeling in spontaneous transgenic tumors (RIP1-Tag2 insulinomas) and orthotopically injected tumors (KPC adenocarcinomas). Analysis of the data acquired in insulinomas revealed major differences in tumor blood vessel branching, fraction volume, number of branch points segments, vessel straightness and length compared to the normal tissue. The aggressive adenocarcinoma presented widespread peritumoral vascular remodeling and heterogeneous vascular distribution. Longitudinal imaging was used to acquire sequential vascular remodeling data during tumor progression. This work demonstrates the potential for using a pancreatic intravital imaging window for direct visualization of the tumor heterogenic microenvironments during tumor progression.


Assuntos
Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/diagnóstico por imagem , Linhagem Celular Tumoral , Matriz Extracelular , Microscopia Intravital/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica/diagnóstico por imagem , Pâncreas/irrigação sanguínea , Microambiente Tumoral
18.
Cancer Discov ; 8(11): 1366-1375, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30209080

RESUMO

The quest for tumor-associated antigens (TAA) and neoantigens is a major focus of cancer immunotherapy. Here, we combine a neoantigen prediction pipeline and human leukocyte antigen (HLA) peptidomics to identify TAAs and neoantigens in 16 tumors derived from seven patients with melanoma and characterize their interactions with their tumor-infiltrating lymphocytes (TIL). Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neoantigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell cosignatures, allowing us to discover remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, we reveal that two neoantigen-specific clonotypes killed 90% of autologous melanoma cells, both in vitro and in vivo, showing that a limited set of neoantigen-specific T cells may play a central role in melanoma tumor rejection. Our findings indicate that combining HLA peptidomics with neoantigen predictions allows robust identification of targetable neoantigens, which could successfully guide personalized cancer immunotherapies.Significance: As neoantigen targeting is becoming more established as a powerful therapeutic approach, investigating these molecules has taken center stage. Here, we show that a limited set of neoantigen-specific T cells mediates tumor rejection, suggesting that identifying just a few antigens and their corresponding T-cell clones could guide personalized immunotherapy. Cancer Discov; 8(11); 1366-75. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Aging (Albany NY) ; 8(2): 328-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26878797

RESUMO

Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis.


Assuntos
Senescência Celular/imunologia , Vigilância Imunológica/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais , Ligantes , Cirrose Hepática/imunologia , Camundongos , Camundongos Knockout
20.
J Clin Invest ; 125(4): 1648-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774502

RESUMO

Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin ß3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Metástase Neoplásica/genética , Proteínas de Neoplasias/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular , Movimento Celular/genética , Polaridade Celular , Feminino , Adesões Focais/fisiologia , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Proteínas Nucleares/fisiologia , Especificidade de Órgãos , Prognóstico , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA