Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2425: 201-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188634

RESUMO

Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally induced cancers. A large sequence of predictive models, ranging from short-term biological assays (e.g., mutagenicity tests) to theoretical models, has been attempted in this field. Theoretical approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote the replacement, reduction, and refinement of animal tests. This chapter reports and describes some of the most noted (Q)SAR models based on human expert knowledge and statistical approaches, aiming at predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been evaluated, and the results are interpreted in details by applying these predictive models to some pharmaceutical molecules.


Assuntos
Bioensaio , Carcinógenos , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/química , Carcinógenos/toxicidade , Humanos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade
2.
Methods Mol Biol ; 1425: 107-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311464

RESUMO

Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally induced cancers. A large sequence of alternative predictive models, ranging from short-term biological assays (e.g. mutagenicity tests) to theoretical models, have been attempted in this field. Theoretical approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote the replacement, reduction, and refinement of animal tests. This chapter reports and describes some of the most noted (Q)SAR models based on the human expert knowledge and statistically approach, aiming at predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been evaluated and the results are interpreted in details by applying these prediction models to some pharmaceutical molecules.


Assuntos
Carcinógenos/química , Biologia Computacional/métodos , Testes de Carcinogenicidade , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Químicos , Relação Quantitativa Estrutura-Atividade
3.
Artigo em Inglês | MEDLINE | ID: mdl-26986491

RESUMO

In this study, new molecular fragments associated with genotoxic and nongenotoxic carcinogens are introduced to estimate the carcinogenic potential of compounds. Two rule-based carcinogenesis models were developed with the aid of SARpy: model R (from rodents' experimental data) and model E (from human carcinogenicity data). Structural alert extraction method of SARpy uses a completely automated and unbiased manner with statistical significance. The carcinogenicity models developed in this study are collections of carcinogenic potential fragments that were extracted from two carcinogenicity databases: the ANTARES carcinogenicity dataset with information from bioassay on rats and the combination of ISSCAN and CGX datasets, which take into accounts human-based assessment. The performance of these two models was evaluated in terms of cross-validation and external validation using a 258 compound case study dataset. Combining R and H predictions and scoring a positive or negative result when both models are concordant on a prediction, increased accuracy to 72% and specificity to 79% on the external test set. The carcinogenic fragments present in the two models were compared and analyzed from the point of view of chemical class. The results of this study show that the developed rule sets will be a useful tool to identify some new structural alerts of carcinogenicity and provide effective information on the molecular structures of carcinogenic chemicals.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Substâncias Perigosas/toxicidade , Animais , Bioensaio , Dano ao DNA , Mutagênicos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA