Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuromuscul Disord ; 33(11): 866-872, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919205

RESUMO

Compartment syndrome (CS) is a medical emergency that occurs secondary to excessively high pressures within a confined fibro-osseous space, resulting in reduced perfusion and subsequent tissue injury. CS can be divided into acute forms, most commonly due to trauma and considered an orthopaedic emergency, and chronic forms, most commonly presenting in athletes with recurrent exercise-induced pain. Downstream pathophysiological mechanisms are complex but do share commonalities with mechanisms implicated in genetic neuromuscular disorders. Here we present 3 patients with recurrent CS in the context of a RYR1-related disorder (n = 1) and PYGM-related McArdle disease (n = 2), two of whom presented many years before the diagnosis of an underlying neuromuscular disorder was suspected. We also summarize the literature on previously published cases with CS in the context of a genetically confirmed neuromuscular disorder and outline how the calcium signalling alterations in RYR1-related disorders and the metabolic abnormalities in McArdle disease may feed into CS-causative mechanisms. These findings expand the phenotypical spectrum of RYR1-related disorders and McArdle disease; whilst most forms of recurrent CS will be sporadic, above and other genetic backgrounds ought to be considered in particular in patients where other suggestive clinical features are present.


Assuntos
Síndromes Compartimentais , Fibromialgia , Doença de Depósito de Glicogênio Tipo V , Doenças Neuromusculares , Humanos , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Síndromes Compartimentais/etiologia , Síndromes Compartimentais/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Doenças Neuromusculares/complicações , Fibromialgia/complicações
2.
Neuromuscul Disord ; 33(10): 769-775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783627

RESUMO

Mutations in RYR1 encoding the ryanodine receptor (RyR) skeletal muscle isoform (RyR1) are a common cause of inherited neuromuscular disorders. Despite its expression in a wide range of tissues, non-skeletal muscle manifestations associated with RYR1 mutations have only been rarely reported. Here, we report three patients with a diagnosis of Central Core Disease (CCD), King-Denborough Syndrome (KDS) and Malignant Hyperthermia Susceptibility (MHS), respectively, who in addition to their (putative) RYR1-related disorder also developed symptoms and signs of acute pancreatitis. In two patients, episodes were recurrent, with severe multisystem involvement and sequelae. RyR1-mediated calcium signalling plays an important role in normal pancreatic function but has also been critically implicated in the pathophysiology of acute pancreatitis, particularly in bile acid- and ethanol-induced forms. Findings from relevant animal models indicate that pancreatic damage in these conditions may be ameliorated through administration of the specific RyR1 antagonist dantrolene and other compounds modifying pancreatic metabolism including calcium signalling. These observations suggest that patients with RYR1 gain-of-function variants may be at increased risk of developing acute pancreatitis, a condition which should therefore be considered in the health surveillance of such individuals.


Assuntos
Hipertermia Maligna , Pancreatite , Animais , Humanos , Doença Aguda , Cálcio/metabolismo , Hipertermia Maligna/genética , Mutação , Pancreatite/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472588

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CXCR3 , Neoplasias Pancreáticas
4.
Cancer Cell ; 40(8): 879-894.e16, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944503

RESUMO

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.


Assuntos
Neoplasias , Transcriptoma , Algoritmos , Linfócitos T CD8-Positivos , Humanos , Aprendizado de Máquina , Neoplasias/genética , RNA-Seq , Análise de Sequência de RNA , Microambiente Tumoral/genética
5.
Radiol Case Rep ; 17(5): 1601-1604, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35309384

RESUMO

Stem cell therapy can present clinicians with challenging clinical scenarios, as access to such treatments outpaces the research into their efficacy and safety due to the burgeoning trend of international travel to acquire stem cell therapy, or "stem cell tourism." Treatment of neurologic conditions remains an enticing potential application of stem cell therapy, often administered intrathecally. In response to such therapy, multiple adverse events have been described in the literature, including neoplasms, demyelinating disease, and seizures, among others. We present a case of symptomatic inflammatory cauda equina nerve root hypertrophy due to intrathecal stem cell infusion, representing a rare but significant complication.

6.
Immunohorizons ; 3(5): 161-171, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31356170

RESUMO

During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3-secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3-producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3-secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3-secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.


Assuntos
Interleucina-3/biossíntese , Mucosa/microbiologia , Pele/microbiologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/imunologia , Listeria monocytogenes/imunologia , Listeriose/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/imunologia , Mucosa/virologia , Mycobacterium bovis/imunologia , Pele/imunologia , Pele/virologia , Tuberculose/microbiologia
7.
Immunity ; 49(6): 1090-1102.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552021

RESUMO

Salmonella enterica (Se) bacteria cause persistent intracellular infections while stimulating a robust interferon-γ-producing CD4+ T (Th1) cell response. We addressed this paradox of concomitant infection and immunity by tracking fluorescent Se organisms in mice. Se bacteria persisted in nitric oxide synthase (iNOS)-producing resident and recruited macrophages while inducing genes related to protection from nitric oxide. Se-infected cells occupied iNOS+ splenic granulomas that excluded T cells but were surrounded by mononuclear phagocytes producing the chemokines CXCL9 and CXCL10, and Se epitope-specific Th1 cells expressing CXCR3, the receptor for these chemokines. Blockade of CXCR3 inhibited Th1 occupancy of CXCL9/10-dense regions, reduced activation of the Th1 cells, and led to increased Se growth. Thus, intracellular Se bacteria survive in their hosts by counteracting toxic products of the innate immune response and by residing in T cell-sparse granulomas, away from abundant Th1 cells positioned via CXCR3 in a bordering region that act to limit infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Granuloma/imunologia , Receptores CXCR3/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Células Th1/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Granuloma/metabolismo , Granuloma/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Ligantes , Ativação de Macrófagos/imunologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/metabolismo , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/fisiologia , Células Th1/metabolismo , Células Th1/microbiologia
8.
J Immunol ; 200(6): 2004-2012, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29436413

RESUMO

CD4+ Th cells can have cytotoxic activity against cells displaying relevant peptide-MHC class II (p:MHCII) ligands. Cytotoxicity may be a property of Th1 cells and depends on perforin and the Eomes transcription factor. We assessed these assertions for polyclonal p:MHCII-specific CD4+ T cells activated in vivo in different contexts. Mice immunized with an immunogenic peptide in adjuvant or infected with lymphocytic choriomeningitis virus or Listeria monocytogenes bacteria induced cytotoxic Th cells that killed B cells displaying relevant p:MHCII complexes. Cytotoxicity was dependent on Fas expression by target cells but was independent of Eomes or perforin expression by T cells. Although the priming regimens induced different proportions of Th1, Th17, regulatory T cells, and T follicular helper cells, the T cells expressed Fas ligand in all cases. Reciprocally, Fas was upregulated on target cells in a p:MHCII-specific manner. These results indicate that many Th subsets have cytotoxic potential that is enhanced by cognate induction of Fas on target cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteína Ligante Fas/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Receptor fas/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
9.
J Immunol ; 199(7): 2596-2606, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821584

RESUMO

Analysis of Ag-specific CD4+ T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4+ T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4+ T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4+ T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154+ cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4+ CD154+ cells was distinct from that of CD154- cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4+ T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4+ T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/genética , Perfilação da Expressão Gênica/métodos , Ativação Linfocitária , Mycobacterium bovis/imunologia , Animais , Antígenos de Bactérias/imunologia , Ligante de CD40/análise , Ligante de CD40/deficiência , Citocinas/biossíntese , Citocinas/imunologia , Epitopos , Interleucina-3/biossíntese , Interleucina-3/imunologia , Camundongos , Vacinação
10.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115505

RESUMO

Tuberculosis (TB) due to Mycobacterium tuberculosis remains a major global infectious disease problem, and a more efficacious vaccine is urgently needed for the control and prevention of disease caused by this organism. We previously reported that a genetically modified strain of Mycobacterium smegmatis called IKEPLUS is a promising TB vaccine candidate. Since protective immunity induced by IKEPLUS is dependent on antigen-specific CD4+ T cell memory, we hypothesized that the specificity of the CD4+ T cell response was a critical feature of this protection. Using in vitro assays of interferon gamma production (enzyme-linked immunosorbent spot [ELISPOT] assays) by splenocytes from IKEPLUS-immunized C57BL/6J mice, we identified an immunogenic peptide within the mycobacterial ribosomal large subunit protein RplJ, encoded by the Rv0651 gene. In a complementary approach, we generated major histocompatibility complex (MHC) class II-restricted T cell hybridomas from IKEPLUS-immunized mice. Screening of these T cell hybridomas against IKEPLUS and ribosomes enriched from IKEPLUS suggested that the CD4+ T cell response in IKEPLUS-immunized mice was dominated by the recognition of multiple components of the mycobacterial ribosome. Importantly, CD4+ T cells specific for mycobacterial ribosomes accumulate to significant levels in the lungs of IKEPLUS-immunized mice following aerosol challenge with virulent M. tuberculosis, consistent with a role for these T cells in protective host immunity in TB. The identification of CD4+ T cell responses to defined ribosomal protein epitopes expands the range of antigenic targets for adaptive immune responses to M. tuberculosis and may help to inform the design of more effective vaccines against tuberculosis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunização , Camundongos , Mycobacterium/patogenicidade , Peptídeos/química , Peptídeos/imunologia , Proteínas Ribossômicas/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Tuberculose/mortalidade , Virulência
11.
J Proteome Res ; 16(1): 298-306, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27802388

RESUMO

Worldwide Salmonella enterica infections result in substantial morbidity and mortality and are the major cause of infant bacteremia in Sub-Saharan Africa. Diseases caused by Salmonella are treatable with antibiotics, but successful antibiotic treatment has become difficult due to antimicrobial resistance and collateral effects on the microbiome. An effective vaccine together with public health efforts may be a better strategy to control these infections. Protective immunity against Salmonella depends primarily on CD4 T-cell-mediated immune responses; therefore, identifying relevant T-cell antigens is necessary for Salmonella vaccine development. We previously used a dendritic-cell-based immunoproteomics approach in our laboratory to identify T-cell antigens. The testing of these antigens as vaccine candidates against Chlamydia infection in mice yielded positive results. We applied this technology in the present study by infecting murine bone-marrow-derived dendritic cells from C57BL/6 mice with Salmonella enterica strain SL1344, followed by immunoaffinity isolation of MHC class I and II molecules and elution of bound peptides. The sequences of the peptides were identified using tandem mass spectrometry. We identified 87 MHC class-II- and 23 MHC class-I-binding Salmonella-derived peptides. Four of the 12 highest scoring class-II-binding Salmonella peptides stimulated IFN-γ production by CD4+ T cells from the spleens of mice with persistent Salmonella infection. We conclude that antigens identified by MHC immunoproteomics will be useful for Salmonella immunobiology studies and are potential Salmonella vaccine candidates. Data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD004451.


Assuntos
Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/biossíntese , Salmonella enterica/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Cromatografia de Afinidade , Células Dendríticas/microbiologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Feminino , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/biossíntese , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/genética , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Vacinas contra Salmonella/administração & dosagem , Baço/imunologia , Baço/microbiologia
12.
Science ; 351(6272): 511-4, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823430

RESUMO

Infection elicits CD4(+) memory T lymphocytes that participate in protective immunity. Although memory cells are the progeny of naïve T cells, it is unclear that all naïve cells from a polyclonal repertoire have memory cell potential. Using a single-cell adoptive transfer and spleen biopsy method, we found that in mice, essentially all microbe-specific naïve cells produced memory cells during infection. Different clonal memory cell populations had different B cell or macrophage helper compositions that matched effector cell populations generated much earlier in the response. Thus, each microbe-specific naïve CD4(+) T cell produces a distinctive ratio of effector cell types early in the immune response that is maintained as some cells in the clonal population become memory cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Memória Imunológica , Listeria monocytogenes/imunologia , Listeriose/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Toxinas Bacterianas/imunologia , Células Clonais/imunologia , Proteínas de Choque Térmico/imunologia , Proteínas Hemolisinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Análise de Célula Única
13.
Immunity ; 40(1): 105-16, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412610

RESUMO

Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.


Assuntos
Citocinas/metabolismo , Células Dendríticas/imunologia , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD8/metabolismo , Comunicação Celular , Galactosilceramidas/imunologia , Regulação da Expressão Gênica/imunologia , Homeostase , Inflamação/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/metabolismo
14.
Microbiol Spectr ; 2(5)2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26104343

RESUMO

Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.


Assuntos
Imunidade Adaptativa , Evasão da Resposta Imune , Imunidade Inata , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/fisiologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Fagossomos/metabolismo , Fagossomos/microbiologia
15.
J Biol Chem ; 288(11): 7481-7491, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23297415

RESUMO

Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response.


Assuntos
Adjuvantes Imunológicos/metabolismo , Catepsinas/metabolismo , Necrose , Células Th2/citologia , Animais , Caspase 1/metabolismo , Catepsina C/farmacologia , Morte Celular , Linhagem Celular , Feminino , Granulócitos/citologia , Sistema Imunitário , Imunidade Inata , Inflamação , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/química , Transdução de Sinais , Baço/citologia , Células Th2/metabolismo
16.
J Immunol ; 190(4): 1528-39, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335751

RESUMO

AKT3, a member of the serine/threonine kinase AKT family, is involved in a variety of biologic processes. AKT3 is expressed in immune cells and is the major AKT isoform in the CNS representing 30% of the total AKT expressed in spinal cord, and 50% in the brain. Myelin-oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model in which lymphocytes and monocytes enter the CNS, resulting in inflammation, demyelination, and axonal injury. We hypothesized that during EAE, deletion of AKT3 would negatively affect the CNS of AKT3(-/-) mice, making them more susceptible to CNS damage. During acute EAE, AKT3(-/-)mice were more severely affected than wild type (WT) mice. Evaluation of spinal cords showed that during acute and chronic disease, AKT3(-/-) spinal cords had more demyelination compared with WT spinal cords. Quantitative RT-PCR determined higher levels of IL-2, IL-17, and IFN-γ mRNA in spinal cords from AKT3(-/-) mice than WT. Experiments using bone marrow chimeras demonstrated that AKT3(-/-) mice receiving AKT3-deficient bone marrow cells had elevated clinical scores relative to control WT mice reconstituted with WT cells, indicating that altered function of both CNS cells and bone marrow-derived immune cells contributed to the phenotype. Immunohistochemical analysis revealed decreased numbers of Foxp3(+) regulatory T cells in the spinal cord of AKT3(-/-) mice compared with WT mice, whereas in vitro suppression assays showed that AKT3-deficient Th cells were less susceptible to regulatory T cell-mediated suppression than their WT counterparts. These results indicate that AKT3 signaling contributes to the protection of mice against EAE.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Mediadores da Inflamação/fisiologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/imunologia , Doença Aguda , Animais , Doença Crônica , Encefalomielite Autoimune Experimental/induzido quimicamente , Predisposição Genética para Doença , Mediadores da Inflamação/antagonistas & inibidores , Região Lombossacral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/antagonistas & inibidores , Glicoproteína Mielina-Oligodendrócito/fisiologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/fisiologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia
17.
J Neuroinflammation ; 8: 49, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21569627

RESUMO

BACKGROUND: Axl, together with Tyro3 and Mer, constitute the TAM family of receptor tyrosine kinases. In the nervous system, Axl and its ligand Growth-arrest-specific protein 6 (Gas6) are expressed on multiple cell types. Axl functions in dampening the immune response, regulating cytokine secretion, clearing apoptotic cells and debris, and maintaining cell survival. Axl is upregulated in various disease states, such as in the cuprizone toxicity-induced model of demyelination and in multiple sclerosis (MS) lesions, suggesting that it plays a role in disease pathogenesis. To test for this, we studied the susceptibility of Axl-/- mice to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. METHODS: WT and Axl-/- mice were immunized with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Mice were monitored daily for clinical signs of disease and analyzed for pathology during the acute phase of disease. Immunological responses were monitored by flow cytometry, cytokine analysis and proliferation assays. RESULTS: Axl-/- mice had a significantly more severe acute phase of EAE than WT mice. Axl-/- mice had more spinal cord lesions with larger inflammatory cuffs, more demyelination, and more axonal damage than WT mice during EAE. Strikingly, lesions in Axl-/- mice had more intense Oil-Red-O staining indicative of inefficient clearance of myelin debris. Fewer activated microglia/macrophages (Iba1+) were found in and/or surrounding lesions in Axl-/- mice relative to WT mice. In contrast, no significant differences were noted in immune cell responses between naïve and sensitized animals. CONCLUSIONS: These data show that Axl alleviates EAE disease progression and suggests that in EAE Axl functions in the recruitment of microglia/macrophages and in the clearance of debris following demyelination. In addition, these data provide further support that administration of the Axl ligand Gas6 could be therapeutic for immune-mediated demyelinating diseases.


Assuntos
Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Inflamação/imunologia , Bainha de Mielina/patologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Sistema Nervoso Central/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Glicoproteínas/imunologia , Inflamação/patologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/imunologia , Bainha de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/imunologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
18.
Am J Pathol ; 177(2): 735-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20595632

RESUMO

NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Caspase 1/metabolismo , Inibidores de Proteassoma , Animais , Bacillus anthracis/patogenicidade , Inibidores de Caspase , Morte Celular , Células Cultivadas , Ativação Enzimática , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Endogâmicos
19.
J Infect Dis ; 198(2): 284-92, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18593295

RESUMO

Here we characterize Francisella tularensis live vaccine strain (LVS) infection in total tumor necrosis factor (TNF) knockout (KO) mice and in transgenic mice expressing only the membrane form of TNF (memTNF). MemTNF mice, but not TNF KO mice, survived low-dose, sublethal LVS infections. Splenic nitric oxide production was impaired in infected memTNF mice and was absent in infected TNF KO mice. Spleen cell production of interferon-gamma, RANTES, and monocyte chemotactic protein-1 was elevated in TNF KO mice, compared with that in WT mice, by days 4-5 after infection, along with transiently increased numbers of CCR2(+) cells, whereas memTNF mice had an intermediate phenotype. By day 6 after infection, TNF KO mice, but not memTNF mice, exhibited massive apoptosis in spleens and livers, which shortly preceded their death. Thus, memTNF partially functions to regulate chemokine expression, cell recruitment, and nitric oxide production during primary LVS infection and protects against the induction of apoptosis observed in TNF KO mice.


Assuntos
Vacinas Bacterianas/imunologia , Membrana Celular/imunologia , Francisella tularensis/imunologia , Imunidade Inata , Tularemia/imunologia , Fator de Necrose Tumoral alfa/imunologia , Vacinas Atenuadas/imunologia , Animais , Apoptose , Aspartato Aminotransferases/sangue , Divisão Celular , Francisella tularensis/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Espécies Reativas de Oxigênio , Organismos Livres de Patógenos Específicos , Baço/imunologia , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
20.
PET Clin ; 3(3): 293-315, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27156663

RESUMO

A better understanding of tumorigenesis is crucial for the development of specific molecular therapies that specifically target the neoplasm and reduce patient morbidity and mortality. PET measures a wide range of physiologic processes critical for understanding the pathophysiology of brain neoplasms with high sensitivity. Continuous developments in PET provide new insights into the diagnosis, classification, and pathophysiology of brain neoplasms. As such, PET has played an increasingly important role in the staging of brain neoplasms, image-guided therapy planning, and treatment monitoring. This article addresses the most commonly used agents in PET imaging of brain tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA