Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260486

RESUMO

The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.

2.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925681

RESUMO

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Assuntos
Megacariócitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recém-Nascido , Megacariócitos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Trombocitopenia/genética , Trombopoese/genética , Quinases Dyrk
3.
Nat Commun ; 12(1): 1645, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712594

RESUMO

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI.


Assuntos
Anemia/metabolismo , Anemia/terapia , Citoesqueleto/metabolismo , Ferro/metabolismo , Microtúbulos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Células Eritroides/metabolismo , Eritropoese/fisiologia , Feminino , Ferritinas/metabolismo , Isocitratos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Proteômica
4.
Haematologica ; 105(4): 905-913, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31171641

RESUMO

Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Idoso , Envelhecimento , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Eritropoese , Humanos , Camundongos
5.
Exp Hematol ; 61: 1-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501467

RESUMO

Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.


Assuntos
Megacariócitos/citologia , Sangue Fetal/citologia , Humanos , Megacariócitos/patologia , Modelos Biológicos , Morfogênese/fisiologia , Fenótipo , Trombocitopenia/patologia
6.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481226

RESUMO

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Assuntos
Megacariócitos/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Recém-Nascido , Células K562 , Camundongos Endogâmicos C57BL , Ativação Transcricional
8.
Dev Cell ; 27(6): 607-20, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24369834

RESUMO

Megakaryocyte morphogenesis employs a "hypertrophy-like" developmental program that is dependent on P-TEFb kinase activation and cytoskeletal remodeling. P-TEFb activation classically occurs by a feedback-regulated process of signal-induced, reversible release of active Cdk9-cyclin T modules from large, inactive 7SK small nuclear ribonucleoprotein particle (snRNP) complexes. Here, we have identified an alternative pathway of irreversible P-TEFb activation in megakaryopoiesis that is mediated by dissolution of the 7SK snRNP complex. In this pathway, calpain 2 cleavage of the core 7SK snRNP component MePCE promoted P-TEFb release and consequent upregulation of a cohort of cytoskeleton remodeling factors, including α-actinin-1. In a subset of human megakaryocytic leukemias, the transcription factor GATA1 undergoes truncating mutation (GATA1s). Here, we linked the GATA1s mutation to defects in megakaryocytic upregulation of calpain 2 and of P-TEFb-dependent cytoskeletal remodeling factors. Restoring calpain 2 expression in GATA1s mutant megakaryocytes rescued normal development, implicating this morphogenetic pathway as a target in human leukemogenesis.


Assuntos
Calpaína/fisiologia , Transformação Celular Neoplásica/patologia , Fator de Transcrição GATA1/genética , Leucemia/patologia , Megacariócitos/patologia , Mutação/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Actinina/genética , Actinina/metabolismo , Animais , Western Blotting , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Citometria de Fluxo , Fator de Transcrição GATA1/metabolismo , Humanos , Imunoprecipitação , Leucemia/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas Nucleares Pequenas/genética , Transcrição Gênica
9.
J Clin Invest ; 123(8): 3614-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863711

RESUMO

The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.


Assuntos
Anemia/tratamento farmacológico , Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Deficiências de Ferro , Isocitratos/farmacologia , Aconitato Hidratase/metabolismo , Anemia/metabolismo , Anemia/patologia , Animais , Células Cultivadas , Células Eritroides/enzimologia , Feminino , Humanos , Interferon gama/fisiologia , Isocitratos/uso terapêutico , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional
10.
Blood ; 120(20): 4219-28, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22983445

RESUMO

In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.


Assuntos
Eritropoese/fisiologia , Fator de Transcrição GATA1/fisiologia , Histona Desacetilases/fisiologia , Proteína Quinase C/fisiologia , Acetilação , Anemia/enzimologia , Anemia/genética , Anemia/patologia , Animais , Carbazóis/farmacologia , Linhagem da Célula , Citocinas/fisiologia , Ativação Enzimática , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/enzimologia , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
11.
J Biol Chem ; 287(23): 19207-15, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22514271

RESUMO

Signaling via the intracellular second messenger cyclic AMP (cAMP) has long been implicated in the repression of megakaryocytic differentiation. However, the mechanisms by which cAMP signaling impairs megakaryopoiesis have never been elucidated. In a human CD34(+) cell culture model, we show that the adenylyl cyclase agonist forskolin inhibits megakaryocytic differentiation in a protein kinase A-dependent manner. Using this system to screen for downstream effectors, we identified the transcription factor E2A as a key target in a novel repressive signaling pathway. Specifically, forskolin acting through protein kinase A-induced E2A down-regulation and enforced expression of E2A overrode the inhibitory effects of forskolin on megakaryopoiesis. The dependence of megakaryopoiesis on critical thresholds of E2A expression was confirmed in vivo in haploinsufficient mice and ex vivo using shRNA knockdown in human progenitors. Using a variety of approaches, we further identified p21 (encoded by CDKN1A) as a functionally important megakaryopoietic regulator residing downstream of E2A. These results thus implicate the E2A-CDKN1A transcriptional axis in the control of megakaryopoiesis and reveal the lineage-selective inhibition of this axis as a likely mechanistic basis for the inhibitory effects of cAMP signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , AMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Megacariócitos/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Trombopoese/fisiologia , Transcrição Gênica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HEK293 , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Mutantes
12.
PLoS One ; 6(8): e23850, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887333

RESUMO

BACKGROUND: Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy. METHODOLOGY/PRINCIPAL FINDINGS: In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition. CONCLUSIONS/SIGNIFICANCE: Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.


Assuntos
Aconitato Hidratase/fisiologia , Eritropoese , Sistema de Sinalização das MAP Quinases , Aconitato Hidratase/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Policitemia Vera
14.
Blood ; 116(1): 97-108, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20407036

RESUMO

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.


Assuntos
Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/metabolismo , Ferro/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Anemia Ferropriva/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Deficiências de Ferro , Proteína 1 Reguladora do Ferro/genética , Isocitratos/administração & dosagem , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
15.
J Cell Biochem ; 107(3): 377-82, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350569

RESUMO

Transcription factors originally identified as drivers of erythroid differentiation subsequently became linked to megakaryopoiesis, reflecting the shared parentage of red cells and platelets. The divergent development of megakaryocytic and erythroid progenitors relies on signaling pathways that impose lineage-specific transcriptional programs on non-lineage-restricted protein complexes. One such signaling pathway involves RUNX1, a transcription factor upregulated in megakaryocytes and downregulated in erythroid cells. In this pathway, RUNX1 engages the erythro-megakaryocytic master regulator GATA-1 in a megakaryocytic transcriptional complex whose activity is highly dependent on the P-TEFb kinase complex. The implications of this pathway for normal and pathological megakaryopoiesis are discussed.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA1/genética , Humanos , Megacariócitos/citologia , Transdução de Sinais
16.
Nat Chem Biol ; 5(4): 236-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19172146

RESUMO

It has been proposed that inhibitors of an oncogene's effects on multipotent hematopoietic progenitor cell differentiation may change the properties of the leukemic stem cells and complement the clinical use of cytotoxic drugs. Using zebrafish, we developed a robust in vivo hematopoietic differentiation assay that reflects the activity of the oncogene AML1-ETO. Screening for modifiers of AML1-ETO-mediated hematopoietic dysregulation uncovered unexpected roles of COX-2- and beta-catenin-dependent pathways in AML1-ETO function. This approach may open doors for developing therapeutics targeting oncogene function within leukemic stem cells.


Assuntos
Proteínas Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Dinoprostona , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Células K562 , Nitrobenzenos , Proteínas Oncogênicas/genética , Bibliotecas de Moléculas Pequenas , Sulfonamidas , Fatores de Transcrição , Peixe-Zebra , beta Catenina
17.
Blood ; 112(13): 4884-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18780834

RESUMO

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood. In this study, we identified functional and physical interaction of GATA-1 with components of the positive transcriptional elongation factor P-TEFb, a complex containing cyclin T1 and the cyclin-dependent kinase 9 (Cdk9). Megakaryocytic induction was associated with dynamic changes in endogenous P-TEFb composition, including recruitment of GATA-1 and dissociation of HEXIM1, a Cdk9 inhibitor. shRNA knockdowns and pharmacologic inhibition both confirmed contribution of Cdk9 activity to megakaryocytic differentiation. In mice with megakaryocytic GATA-1 deficiency, Cdk9 inhibition produced a fulminant but reversible megakaryoblastic disorder reminiscent of the transient myeloproliferative disorder of Down syndrome. P-TEFb has previously been implicated in promoting elongation of paused RNA polymerase II and in programming hypertrophic differentiation of cardiomyocytes. Our results offer evidence for P-TEFb cross-talk with GATA-1 in megakaryocytic differentiation, a program with parallels to cardiomyocyte hypertrophy.


Assuntos
Diferenciação Celular , Quinase 9 Dependente de Ciclina/fisiologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Fator B de Elongação Transcricional Positiva/metabolismo , Receptor Cross-Talk , Animais , Células Cultivadas , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Síndrome de Down , Fator de Transcrição GATA1/genética , Humanos , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos
18.
Crit Rev Eukaryot Gene Expr ; 17(4): 271-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17725493

RESUMO

Runt-related transcription factor 1 (RUNX1) and GATA-1 are both transcription factors known to play essential roles in hematopoiesis. Genetic alterations of each are associated with abnormal platelet development, as well as predisposition to leukemia. In addition, in vitro and animal studies indicate that both factors are involved in megakaryopoiesis. We and others have previously shown that RUNX1 and GATA-1 physically interact and cooperate in the activation of megakaryocytic promoters such as alpha IIb integrin and glycoprotein Ibalpha. Moreover, transcriptional cooperation of RUNX1 with GATA-1 is conserved back to Drosophila in which RUNX1 and GATA-1 homologs cooperate in crystal cell development. In this article, we will review the molecular and functional significance of the transcriptional cross talk between RUNX1 and GATA-1. In particular, we will elaborate on recent data which suggest that GATA-1 targets RUNX1 for modification, in particular phosphorylation by cyclin-dependent kinases. Furthermore, targeting of RUNX1 by GATA-1 for phosphorylation may convert RUNX1 from a repressor to an activator. This is a potential mechanism of transcriptional cooperation and may be an essential step in megakaryocytic differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA1/fisiologia , Regulação da Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Animais , Fator de Transcrição GATA1/genética , Humanos , Megacariócitos/citologia , Camundongos , Mutação , Fosforilação
19.
Cancer Lett ; 251(2): 179-86, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17125917

RESUMO

The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability.


Assuntos
Medula Óssea/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese , Leucemia Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Doença Aguda , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Mutação , Proteína 1 Parceira de Translocação de RUNX1 , Proteínas Supressoras de Tumor/efeitos dos fármacos
20.
Cancer Res ; 66(6): 2990-6, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540647

RESUMO

Human acute myeloid leukemias with the t(8;21) translocation express the AML1-ETO fusion protein in the hematopoietic stem cell compartment and show impairment in erythroid differentiation. This clinical finding is reproduced in multiple murine and cell culture model systems in which AML1-ETO specifically interferes with erythroid maturation. Using purified normal human early hematopoietic progenitor cells, we find that AML1-ETO impedes the earliest discernable steps of erythroid lineage commitment. Correspondingly, GATA-1, a central transcriptional regulator of erythroid differentiation, undergoes repression by AML1-ETO in a nonconventional histone deacetylase-independent manner. In particular, GATA-1 acetylation by its transcriptional coactivator, p300/CBP, a critical regulatory step in programming erythroid development, is efficiently blocked by AML1-ETO. Fusion of a heterologous E1A coactivator recruitment module to GATA-1 overrides the inhibitory effects of AML1-ETO on GATA-1 acetylation and transactivation. Furthermore, the E1A-GATA-1 fusion, but not wild-type GATA-1, rescues erythroid lineage commitment in primary human progenitors expressing AML1-ETO. These results ascribe a novel repressive mechanism to AML1-ETO, blockade of GATA-1 acetylation, which correlates with its inhibitory effects on primary erythroid lineage commitment.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Precursoras Eritroides/fisiologia , Fator de Transcrição GATA1/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Acetilação , Antígenos CD34/biossíntese , Antígenos CD34/imunologia , Antígenos CD36/biossíntese , Antígenos CD36/imunologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/imunologia , Células Precursoras Eritroides/metabolismo , Humanos , Células K562 , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1 , Ativação Transcricional , Transfecção , Dedos de Zinco/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA