Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 6(7): 899-909, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33907312

RESUMO

SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.


Assuntos
COVID-19/transmissão , Furina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/virologia , Catepsinas/metabolismo , Chlorocebus aethiops , Endossomos/metabolismo , Células Epiteliais , Furões , Humanos , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/virologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Empacotamento do Genoma Viral , Internalização do Vírus , Replicação Viral , Eliminação de Partículas Virais
2.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269123

RESUMO

Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as "mixing vessels," being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study, we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports the activity of avian-origin influenza virus polymerases and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic, it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced proviral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host.IMPORTANCE Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but they only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus "mixing vessels." In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this by binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as mixing vessels.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/genética , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Especificidade de Hospedeiro , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Transdução de Sinais , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
3.
BMC Evol Biol ; 13: 206, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24059872

RESUMO

BACKGROUND: Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated - by experimental evolution - electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. RESULTS: We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. CONCLUSIONS: The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates -despite similar genome structure and replication mechanisms- and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but wide geographic sampling, across varying environmental conditions may be necessary to characterize the full repertoire. Variation in reassortment rates can assist in the delineation of viral populations and is likely to provide insight into important viral evolutionary dynamics including the rate of coinfection, virulence, and host range shifts. Electrophoretic mobility may be an indicator of important determinants of fitness and the techniques herein can be applied to the study of other viruses.


Assuntos
Bacteriófago phi 6/classificação , Bacteriófago phi 6/genética , Cystoviridae/genética , Bacteriófago phi 6/fisiologia , Evolução Biológica , California , Cystoviridae/classificação , Cystoviridae/fisiologia , Eletroforese , Genoma Viral , Especificidade de Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA