Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(1): e0052322, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36719247

RESUMO

Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time. Previously, we showed that this conidial pigment interferes with the formation of flotillin-dependent lipid raft microdomains in the phagosomal membrane, thereby preventing the formation of functional phagolysosomes. Besides flotillins, stomatin is a major component of lipid rafts and can be targeted to the membrane. However, only limited information on stomatin is available, in particular on its role in defense against pathogens. To determine the function of this integral membrane protein, a stomatin-deficient macrophage line was generated by CRISPR/Cas9 gene editing. Immunofluorescence microscopy and flow cytometry revealed that stomatin contributes to the phagocytosis of conidia and is important for recruitment of the ß-glucan receptor dectin-1 to both the cytoplasmic membrane and phagosomal membrane. In stomatin knockout cells, fusion of phagosomes and lysosomes, recruitment of the vATPase to phagosomes, and tumor necrosis factor alpha (TNF-α) levels were reduced when cells were infected with pigmentless conidia. Thus, our data suggest that stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. IMPORTANCE Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the ß-glucan receptor dectin-1 to the phagosomal membrane of macrophages. Furthermore, stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. The data provide new insights on the important role of stomatin in the immune response against human-pathogenic fungi.


Assuntos
Aspergillus fumigatus , Macrófagos , Humanos , Aspergillus fumigatus/metabolismo , Macrófagos/microbiologia , Fagossomos , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
2.
STAR Protoc ; 2(1): 100328, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33598659

RESUMO

The analysis of phagolysosomes within professional phagocytic cells is facilitated by their isolation. Here, we optimized a protocol for the isolation of intact phagolysosomes from macrophages infected with the spores of Aspergillus fumigatus. Purified phagolysosomes allow improved immunostaining, e.g., of phagolysosomal membrane proteins, or proteome analysis. For complete details on the use and execution of this protocol, please refer to Schmidt et al. (2020).


Assuntos
Aspergillus fumigatus/metabolismo , Macrófagos , Fagossomos , Esporos Fúngicos/metabolismo , Animais , Imunofluorescência , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Fagossomos/metabolismo , Fagossomos/microbiologia , Células RAW 264.7
3.
Cell Rep ; 32(7): 108017, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814035

RESUMO

Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains. Furthermore, we describe a virulence mechanism leading to dysregulation of membrane microdomains by melanized wild-type conidia of the important human-pathogenic fungus Aspergillus fumigatus resulting in reduced phagolysosomal acidification. We show that phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca2+ ions and that inhibition of Ca2+-dependent calmodulin activity led to reduced lipid-raft formation. We identify a single-nucleotide polymorphism in the human FLOT1 gene resulting in heightened susceptibility for invasive aspergillosis in hematopoietic stem cell transplant recipients. Collectively, flotillin-dependent microdomains on the phagolysosomal membrane play an essential role in protective antifungal immunity.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas de Membrana/uso terapêutico , Micoses/tratamento farmacológico , Fagossomos/metabolismo , Humanos , Proteínas de Membrana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA