Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 705, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335541

RESUMO

The molecular basis for ultraviolet (UV) light-induced nonmelanoma and melanoma skin cancers centers on cumulative genomic instability caused by inefficient DNA repair of dipyrimidine photoproducts. Inefficient DNA repair and subsequent translesion replication past these DNA lesions generate distinct molecular signatures of tandem CC to TT and C to T transitions at dipyrimidine sites. Since previous efforts to develop experimental strategies to enhance the repair capacity of basal keratinocytes have been limited, we have engineered the N-terminally truncated form (Δ228) UV endonuclease (UVDE) from Schizosaccharomyces pombe to include a TAT cell-penetrating peptide sequence with or without a nuclear localization signal (NLS): UVDE-TAT and UVDE-NLS-TAT. Further, a NLS was engineered onto a pyrimidine dimer glycosylase from Paramecium bursaria chlorella virus-1 (cv-pdg-NLS). Purified enzymes were encapsulated into liposomes and topically delivered to the dorsal surface of SKH1 hairless mice in a UVB-induced carcinogenesis study. Total tumor burden was significantly reduced in mice receiving either UVDE-TAT or UVDE-NLS-TAT versus control empty liposomes and time to death was significantly reduced with the UVDE-NLS-TAT. These data suggest that efficient delivery of exogenous enzymes for the initiation of repair of UVB-induced DNA damage may protect from UVB induction of squamous and basal cell carcinomas.


Assuntos
Carcinogênese/efeitos da radiação , Reparo do DNA , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta , Animais , Enzimas Reparadoras do DNA/administração & dosagem , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Camundongos Pelados , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
PLoS One ; 9(11): e112376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386657

RESUMO

BACKGROUND: Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies. METHODS: We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy. RESULTS: Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab. CONCLUSION: These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Imunoglobulina G/farmacologia , Receptor ErbB-3/imunologia , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Antineoplásicos/química , Antineoplásicos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Células HEK293 , Xenoenxertos/efeitos dos fármacos , Humanos , Imunoglobulina G/química , Imunoterapia/métodos , Masculino , Camundongos Nus , Neoplasias/terapia , Receptor ErbB-3/química , Anticorpos de Cadeia Única/química
3.
ACS Nano ; 3(10): 3175-83, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19775119

RESUMO

Vaults are large protein nanocapsules that may be useful as drug delivery vehicles due to their normal presence in humans, their large interior volume, their simple structural composition consisting of multiple copies of one protein, and a recombinant production system that also provides a means to tailor their structure. However, for vaults to be effective in such applications, efficient means to load the interiors of the capsules must be demonstrated. Here we describe the use of a domain derived from a vault lumen-associated protein as a carrier to target both gold nanoclusters and heterologous His-tagged proteins to specific binding sites on the vault interior wall.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ouro/química , Nanocápsulas/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Bovinos , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Histidina/metabolismo , Níquel/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA