Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(2): e0149407, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901797

RESUMO

Papain-like cysteine proteases (PLCPs) constitute the largest group of thiol-based protein degrading enzymes and are characterized by a highly conserved fold. They are found in bacteria, viruses, plants and animals and involved in a number of physiological and pathological processes, parasitic infections and host defense, making them interesting targets for drug design. The Marasmius oreades agglutinin (MOA) is a blood group B-specific fungal chimerolectin with calcium-dependent proteolytic activity. The proteolytic domain of MOA presents a unique structural arrangement, yet mimicking the main structural elements in known PLCPs. Here we present the X-ray crystal structure of MOA in complex with Z-VAD-fmk, an irreversible caspase inhibitor known to cross-react with PLCPs. The structural data allow modeling of the substrate binding geometry and mapping of the fundamental enzyme-substrate interactions. The new information consolidates MOA as a new, yet strongly atypical member of the papain superfamily. The reported complex is the first published structure of a PLCP in complex with the well characterized caspase inhibitor Z-VAD-fmk.


Assuntos
Aglutininas/química , Inibidores de Caspase/química , Marasmius/enzimologia , Catálise , Papaína/química , Estrutura Terciária de Proteína
2.
Biochim Biophys Acta ; 1854(1): 20-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448725

RESUMO

The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response.


Assuntos
Colocasia/metabolismo , Globulinas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Carboidratos , Cromatografia em Gel , Cisteína/química , Cisteína/metabolismo , Eletroforese em Gel Bidimensional , Globulinas/química , Globulinas/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio , Lectinas de Ligação a Manose/química , Dados de Sequência Molecular , Peso Molecular , Lectinas de Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Tubérculos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química , Triptofano/metabolismo
3.
Biochem Biophys Res Commun ; 447(4): 586-9, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24747075

RESUMO

The Marasmius oreades mushroom agglutinin (MOA) is a blood group B-specific lectin carrying an active proteolytic domain. Its enzymatic activity has recently been shown to be critical for toxicity of MOA toward the fungivorous soil nematode Caenorhabditis elegans. Here we present evidence that MOA also induces cytotoxicity in a cellular model system (murine NIH/3T3 cells), by inhibiting protein synthesis, and that cytotoxicity correlates, at least in part, with proteolytic activity. A peptide-array screen identified the apoptosis mediator BAX as a potential proteolytic substrate and further suggests a variety of bacterial and fungal peptides as potential substrates. These findings are in line with the suggestion that MOA and related proteases may play a role for host defense.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Fúngicas/farmacologia , Proteína X Associada a bcl-2/metabolismo , Aglutininas/metabolismo , Aglutininas/farmacologia , Aglutininas/toxicidade , Substituição de Aminoácidos , Animais , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/toxicidade , Variação Genética , Lectinas/metabolismo , Lectinas/farmacologia , Lectinas/toxicidade , Marasmius/química , Marasmius/genética , Camundongos , Células NIH 3T3 , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/toxicidade , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade
4.
Biochem Biophys Res Commun ; 408(3): 405-10, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21513701

RESUMO

The Marasmius oreades mushroom lectin (MOA) is well known for its exquisite binding specificity for blood group B antigens. In addition to its N-terminal carbohydrate-binding domain, MOA possesses a C-terminal domain with unknown function, which structurally resembles hydrolytic enzymes. Here we show that MOA indeed has catalytic activity. It is a calcium-dependent cysteine protease resembling papain-like cysteine proteases, with Cys215 being the catalytic nucleophile. The possible importance of MOA's proteolytic activity for mushroom defense against pathogens is discussed.


Assuntos
Aglutininas/química , Cisteína Proteases/química , Lectinas/química , Marasmius/enzimologia , Aglutininas/isolamento & purificação , Sequência de Aminoácidos , Catálise , Cisteína Proteases/isolamento & purificação , Hidrólise , Lectinas/isolamento & purificação , Dados de Sequência Molecular , Papaína/química , Papaína/isolamento & purificação , Estrutura Terciária de Proteína
5.
Glycobiology ; 21(7): 973-84, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21436237

RESUMO

Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galß. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galß1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.


Assuntos
Lectinas/química , Lectinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polyporus/metabolismo , Trissacarídeos/metabolismo , Adesão Celular , Simulação por Computador , Cristalografia por Raios X , Glicoconjugados , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Receptores de Superfície Celular , Trissacarídeos/química
6.
J Biol Chem ; 285(12): 8646-55, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080975

RESUMO

BanLec is a jacalin-related lectin isolated from the fruit of bananas, Musa acuminata. This lectin binds to high mannose carbohydrate structures, including those found on viruses containing glycosylated envelope proteins such as human immunodeficiency virus type-1 (HIV-1). Therefore, we hypothesized that BanLec might inhibit HIV-1 through binding of the glycosylated HIV-1 envelope protein, gp120. We determined that BanLec inhibits primary and laboratory-adapted HIV-1 isolates of different tropisms and subtypes. BanLec possesses potent anti-HIV activity, with IC(50) values in the low nanomolar to picomolar range. The mechanism for BanLec-mediated antiviral activity was investigated by determining if this lectin can directly bind the HIV-1 envelope protein and block entry of the virus into the cell. An enzyme-linked immunosorbent assay confirmed direct binding of BanLec to gp120 and indicated that BanLec can recognize the high mannose structures that are recognized by the monoclonal antibody 2G12. Furthermore, BanLec is able to block HIV-1 cellular entry as indicated by temperature-sensitive viral entry studies and by the decreased levels of the strong-stop product of early reverse transcription seen in the presence of BanLec. Thus, our data indicate that BanLec inhibits HIV-1 infection by binding to the glycosylated viral envelope and blocking cellular entry. The relative anti-HIV activity of BanLec compared favorably to other anti-HIV lectins, such as snowdrop lectin and Griffithsin, and to T-20 and maraviroc, two anti-HIV drugs currently in clinical use. Based on these results, BanLec is a potential component for an anti-viral microbicide that could be used to prevent the sexual transmission of HIV-1.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV/metabolismo , Lectinas/uso terapêutico , Musa/metabolismo , Extratos Vegetais/uso terapêutico , Replicação Viral/efeitos dos fármacos , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática/métodos , Glicosilação , Humanos , Concentração Inibidora 50 , Macrófagos/citologia , Monócitos/citologia , Transcrição Gênica
7.
Mol Cell Proteomics ; 8(7): 1697-707, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19377061

RESUMO

Changes to the glycan structures of proteins secreted by cancer cells are known to be functionally important and to have potential diagnostic value. However, an exploration of the population variation and prevalence of glycan alterations on specific proteins has been lacking because of limitations in conventional glycobiology methods. Here we report the use of a previously developed antibody-lectin sandwich array method to characterize both the protein and glycan levels of specific mucins and carcinoembryonic antigen-related proteins captured from the sera of pancreatic cancer patients (n = 23) and control subjects (n = 23). The MUC16 protein was frequently elevated in the cancer patients (65% of the patients) but showed no glycan alterations, whereas the MUC1 and MUC5AC proteins were less frequently elevated (30 and 35%, respectively) and showed highly prevalent (up to 65%) and distinct glycan alterations. The most frequent glycan elevations involved the Thomsen-Friedenreich antigen, fucose, and Lewis antigens. An unexpected increase in the exposure of alpha-linked mannose also was observed on MUC1 and MUC5ac, indicating possible N-glycan modifications. Because glycan alterations occurred independently from the protein levels, improved identification of the cancer samples was achieved using glycan measurements on specific proteins relative to using the core protein measurements. The most significant elevation was the cancer antigen 19-9 on MUC1, occurring in 19 of 23 (87%) of the cancer patients and one of 23 (4%) of the control subjects. This work gives insight into the prevalence and protein carriers of glycan alterations in pancreatic cancer and points to the potential of using glycan measurements on specific proteins for highly effective biomarkers.


Assuntos
Anticorpos/imunologia , Antígenos de Neoplasias/química , Glicoproteínas/química , Imunoensaio/métodos , Lectinas/imunologia , Neoplasias Pancreáticas/química , Polissacarídeos/química , Antígenos de Neoplasias/imunologia , Área Sob a Curva , Biomarcadores Tumorais/química , Configuração de Carboidratos , Perfilação da Expressão Gênica , Glicoproteínas/imunologia , Humanos , Lectinas/química , Análise em Microsséries/métodos , Mucina-5AC/química , Mucina-5AC/metabolismo , Ligação Proteica
8.
Biochimie ; 90(11-12): 1769-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18809460

RESUMO

Previous reports on the carbohydrate specificities of Amaranthus caudatus lectin (ACL) and peanut agglutinin (PNA, Arachis hypogea) indicated that they share the same specificity for the Thomsen-Friedenreich (T(alpha), Galbeta1-3GalNAcalpha1-Ser/Thr) glycotope, but differ in monosaccharide binding--GalNAc>>Gal (inactive) for ACL; Gal>>GalNAc (weak) with respect to PNA. However, knowledge of the recognition factors of these lectins was based on studies with a small number monosaccharides and T-related oligosaccharides. In this study, a wider range of interacting factors of ACL and PNA toward known mammalian structural units, natural polyvalent glycotopes and glycans were examined by enzyme-linked lectinosorbent and inhibition assays. The results indicate that the main recognition factors of ACL, GalNAc was the only monosaccharide recognized by ACL as such, its polyvalent forms (poly GalNAcalpha1-Ser/Thr, Tn in asialo OSM) were not recognized much better. Human blood group precursor disaccharides Galbeta1-3/4GlcNAcbeta (I(beta)/II(beta)) were weak ligands, while their clusters (multiantennary II(beta)) and polyvalent forms were active. The major recognition factors of PNA were a combination of alpha or beta anomers of T disaccharide and their polyvalent complexes. Although I(beta)/II(beta) were weak haptens, their polyvalent forms played a significant role in binding. From the 50% molar inhibition profile, the shape of the ACL combining site appears to be a cavity type and most complementary to a disaccharide of Galbeta1-3GalNAc (T), while the PNA binding domain is proposed to be Galbeta1-3GalNAcalpha or beta1--as the major combining site with an adjoining subsite (partial cavity type) for a disaccharide, and most complementary to the linear tetrasaccharide, Galbeta1-3GalNAcbeta1-4Galbeta1-4Glc (T(beta)1-4L, asialo GM(1) sequence). These results should help us understand the differential contributions of polyvalent ligands, glycotopes and subtopes for the interaction with these lectins to binding, and make them useful tools to study glycosciences, glycomarkers and their biological functions.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Dissacarídeos/química , Glicoproteínas/química , Lectinas/química , Aglutinina de Amendoim/química , Animais , Antígenos de Grupos Sanguíneos/química , Humanos , Aglutinina de Amendoim/metabolismo
9.
Glycobiology ; 18(10): 761-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18625848

RESUMO

Glycosylation is among the most complex posttranslational modifications with an extremely high level of diversity that has made it refractory to high-throughput analyses. Despite its resistance to high-throughput techniques, glycosylation is important in many critical cellular processes that necessitate a productive approach to their analysis. To facilitate studies in glycosylation, we developed a high-throughput lectin microarray for defining mammalian cell surface glycan signatures. Using the lectin microarray we established a binary analysis of cell binding and hierarchical organization of 24 mammalian cell lines. The array was also used to document changes in cell surface glycosylation during cell development and differentiation of primary murine immune system cells. To establish the biological and clinical importance of glycan signatures, the lectin microarray was applied in two systems. First, we analyzed the cell surface glycan signatures and were able to predict mannose-dependent tropism using a model pathogen. Second, we used the glycan signatures to identify novel lectin biomarkers for cancer stem-like cells in a murine model. Thus, lectin microarrays are an effective tool for analyzing diverse cell processes including cell development and differentiation, cell-cell communication, pathogen-host recognition, and cell surface biomarker identification.


Assuntos
Lectinas/análise , Análise em Microsséries/métodos , Polissacarídeos/análise , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Escherichia coli/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Ligação Proteica
10.
Glycobiology ; 17(7): 754-66, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17395693

RESUMO

The polypore mushroom Polyporus squamosus is the source of a lectin that exhibits a general affinity for terminal beta-galactosides, but appears to have an extended carbohydrate-binding site with high affinity and strict specificity for the nonreducing terminal trisaccharide sequence NeuAcalpha2 --> 6Galbeta1 --> 4Glc/GlcNAc. In considering the possibility that the lectin's in vivo function could involve interaction with an endogenous glycoconjugate, it would clearly be helpful to identify candidate ligands among various classes of carbohydrate-containing materials expressed by P. squamosus. Since evidence has been accumulating that glycosphingolipids (GSLs) may serve as key ligands for some endogenous lectins in animal species, possible similar roles for fungal GSLs could be considered. For this study, total lipids were extracted from mature fruiting body of P. squamosus. Multistep fractionation yielded a major monohexosylceramide (CMH) component and three major glycosylinositol phosphorylceramides (GIPCs) from the neutral and acidic lipids, respectively. These were characterized by a variety of techniques as required, including one- and two-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy; electrospray ionization-mass spectrometry (ESI-MS, tandem-MS/collision-induced decay-MS, and ion trap-MS(n)); and component and methylation linkage analysis by gas chromatography-mass spectrometry. The CMH was determined to be glucosylceramide having a typical ceramide consisting of 2-hydroxy fatty-N-acylated (4E,8E)-9-methyl-sphinga-4,8-dienine. The GIPCs were identified as Manalpha1 --> 2Ins1-P-1Cer (Ps-1), Galbeta1 --> 6Manalpha1 --> 2Ins1-P-1Cer (Ps-2), and Manalpha1 --> 3Fucalpha1 --> 2Galalpha1 --> 6Galbeta1 --> 6Manalpha1 -->2Ins1-P-1Cer (Ps-5), respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide consisting mainly of long-chain 2-hydroxy and 2,3-dihydroxy fatty-N-acylated 4-hydroxy-sphinganines). Of these GSLs, Ps-2 could potentially interact with P. squamosus lectin, and further investigations will focus on determining the binding affinity, if any, of the lectin for the GIPCs isolated from this fungus.


Assuntos
Glicoesfingolipídeos Acídicos/química , Agaricales/metabolismo , Lectinas/química , Glicoesfingolipídeos Neutros/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Glicoesfingolipídeos/química , Glicosilação , Inositol/química , Lipídeos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metilação , Modelos Químicos , Espectrometria de Massas por Ionização por Electrospray
11.
Biochem J ; 382(Pt 2): 667-75, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15176950

RESUMO

Lectin from the mushroom Polyporus squamosus (PSL) has a unique carbohydrate-binding specificity for sialylated glycoconjugates containing Neu5Acalpha2,6Galbeta1,4Glc/GlcNAc trisaccharide sequences of asparagine-linked glycoproteins. In the present study, we elucidate the molecular basis for its binding specificity as well as establish a consistent source of this useful lectin using a bacterial expression system. cDNA cloning revealed that PSL contains a ricin B chain-like (QXW)(3) domain at its N-terminus that is composed of three homologous subdomains (alpha, beta and gamma). A recombinant lectin was expressed in Escherichia coli as a fully active, soluble form. It agglutinated rabbit erythrocytes and showed the highest affinity for Neu5Acalpha2,6Galbeta1,4GlcNAc, but not for the sialyl alpha2,3-linked isomer. We also investigated the structure-function relationship of PSL. A monomeric C-terminal deletion mutant lacking 40% of the lectin's molecular mass retained sugar-binding activity, indicating that the carbohydrate-binding sites are situated in the N-terminal portion of the lectin, whereas the C-terminal portion probably functions in oligomerization and structural stabilization. Mutant constructs that have single amino acid substitutions in the putative sugar-binding sites, based on sequence alignment with the ricin B-chain, indicate that the beta and gamma subdomains are most probably sugar-binding sites. The recombinantly expressed lectin will be a valuable reagent for the detection of the Neu5Acalpha2,6Galbeta1,4GlcNAc sequence of asparagine-linked glycans.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Lactose/análogos & derivados , Lactose/metabolismo , Lectinas/química , Lectinas/genética , Mutação/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sequência de Aminoácidos/genética , Basidiomycota/genética , Sítios de Ligação , Calorimetria/métodos , Metabolismo dos Carboidratos , Precipitação Química , Dicroísmo Circular/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hemaglutinação , Testes de Inibição da Hemaglutinação/métodos , Temperatura Alta , Lectinas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Peptídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/química , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína/métodos , Deleção de Sequência/genética , Titulometria/métodos
12.
Xenotransplantation ; 11(3): 254-61, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15099205

RESUMO

The binding of two alpha-galactophilic lectins, Marasmius oreades agglutinin (MOA), and Griffonia simplicifolia I isolectin B(4) (GS I-B(4)) to neoglycoproteins and natural glycoproteins were compared in a surface phase assay. Neoglycoproteins carrying various alpha-galactosylated glycans and laminin from basement membrane of mouse sarcoma that contains the xenogenic Galalpha1-3Gal1-4GlcNAc epitope were immobilized in microtiter plate wells and lectin binding determined with an enzyme-linked assay. After 24 h of incubation, MOA had higher affinity for the xenogenic pentasaccharide (Galalpha1-3Gal1-4GlcNAcbeta1-3Galbeta1-4Glc) than for the Galalpha-monosaccharide. The binding properties of MOA and GS I-B(4) to the xenogenic disaccharide (Galalpha1-3Galbeta1) were comparable while the binding of MOA to the xenogenic pentasaccharide was much stronger than the binding of GS I-B(4) to the same epitope. Non-xenogenic disaccharide-coupled neoglycoproteins having galactose end groups linked alpha1-2 or alpha1-4 to Gal or linked alpha1-3 to GalNAc bound very weakly to MOA, whereas GS I-B(4) recognized all of these disaccharides with similarly high affinity. MOA also showed high affinity for laminin. The results indicate that the Marasmius oreades lectin has nearly the same affinities as does GS I-B(4) for the simple xenogenic carbohydrate antigens, but MOA has greater affinity for the pentasaccharide and is far more specific in its binding preferences than the Griffonia lectin.


Assuntos
Galactosídeos/imunologia , Lectinas de Plantas/imunologia , Agaricales , Sítios de Ligação , Dissacarídeos/imunologia , Glicoproteínas/imunologia , Griffonia , Cinética , Melibiose/farmacologia , Proteínas Recombinantes/imunologia
13.
J Biol Chem ; 278(42): 40455-63, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12900403

RESUMO

We describe herein the cDNA cloning, expression, and characterization of a hemolytic lectin and its related species from the parasitic mushroom Laetiporus sulphureus. The lectin designated LSL (L. sulphureus lectin), is a tetramer composed of subunits of approximately 35 kDa associated by non-covalent bonds. From a cDNA library, three similar full-length cDNAs, termed LSLa, LSLb, and LSLc, were generated, each of which had an open reading frame of 945 bp encoding 315 amino acid residues. These proteins share 80-90% sequence identity and showed structural similarity to bacterial toxins: mosquitocidal toxin (MTX2) from Bacillus sphaericus and alpha toxin from Clostridium septicum. Native and recombinant forms of LSL showed hemagglutination and hemolytic activity and both activities were inhibited by N-acetyllactosamine, whereas a C-terminal deletion mutant of LSLa (LSLa-D1) retained hemagglutination, but not hemolytic activity, indicating the N-terminal domain is a carbohydrate recognition domain and the C-terminal domain functions as an oligomerization domain. The LSL-mediated hemolysis was protected osmotically by polyethylene glycol 4000 and maltohexaose. Inhibition studies showed that lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) was the best inhibitor for LSL. These results indicate that LSL is a novel pore-forming lectin homologous to bacterial toxins.


Assuntos
Agaricales/genética , Agaricales/metabolismo , Toxinas Bacterianas/metabolismo , Lectinas/química , Sequência de Aminoácidos , Aminoácidos/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Carboidratos/química , Dicroísmo Circular , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Biblioteca Gênica , Haptenos/química , Hemaglutinação , Hemólise , Concentração Inibidora 50 , Dados de Sequência Molecular , Fases de Leitura Aberta , Osmose , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
14.
Histochem Cell Biol ; 120(2): 143-60, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12898273

RESUMO

The expression of alpha2,6- and alpha2,3-linked sialic acids on N-glycans was studied in embryonic, postnatal, and adult rat kidney. Histochemistry and blotting using Polyporus squamosus and Sambucus nigra lectins for alpha2,6-linked sialic acids and the Maackia amurensis lectin for alpha2,3-linked sialic acids were performed and sialyltransferase activity was assayed. N-glycans with alpha2,6- and alpha2,3-linked sialic acid were differently expressed in the two embryonic anlagen and early stages of nephron. Metanephrogenic mesenchyme was positive for alpha2,3-linked sialic acid but not for the alpha2,6-linked one, which became detectable initially in the proximal part of S-shaped bodies. Collecting ducts were positive for alpha2,6-linked sialic acid, whereas alpha2,3-linked sialic acid was restricted to their ampullae. Although positive in embryonic kidney, S1 and S2 of proximal tubules became unreactive for alpha2,3-linked sialic acid in postnatal and adult kidneys. In adult kidney, intercalated but not principal cells of collecting ducts were reactive for alpha2,3-linked sialic acid. In contrast, alpha2,6-linked sialic acids were detected in all cells of adult kidney nephron. Blot analysis revealed a different but steady pattern of bands reactive for alpha2,6- and alpha2,3-linked sialic acid in embryonic, postnatal, and adult kidney. Activity of alpha2,6 and alpha2,3 sialyltransferases was highest in embryonic kidney and decreased over postnatal to adult kidney with the activity of alpha2,6 sialyltransferase always being three to fourfold that of alpha2,3 sialyltransferase. Thus, alpha2,6- and alpha2,3-linked sialic acids are differently expressed in embryonic anlagen and mesenchyme-derived early stages of nephron and show regional and cell type-specific differences in adult kidney.


Assuntos
Glicoconjugados/metabolismo , Rim/citologia , Néfrons/embriologia , Néfrons/crescimento & desenvolvimento , Polissacarídeos/análise , Ácidos Siálicos/análise , Animais , Western Blotting , Glicoconjugados/química , Rim/embriologia , Rim/crescimento & desenvolvimento , Morfogênese/efeitos dos fármacos , Morfogênese/fisiologia , Néfrons/metabolismo , Polissacarídeos/metabolismo , Ratos , Ácidos Siálicos/metabolismo
15.
J Biol Chem ; 278(13): 10891-9, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12538584

RESUMO

A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.


Assuntos
Lectinas de Plantas/isolamento & purificação , Polypodiaceae/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida , Clonagem Molecular , DNA Complementar , Eritrócitos/efeitos dos fármacos , Testes de Hemaglutinação , Humanos , Dados de Sequência Molecular , Peso Molecular , Filogenia , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/genética , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos
16.
J Agric Food Chem ; 50(22): 6583-5, 2002 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-12381155

RESUMO

Advances in plant lectin biochemistry have made great strides during the past decade. Technical advances in biophysical techniques and molecular biology, the availability of synthetic oligosaccharides, and characterization of lectins with unique carbohydrate-binding properties are responsible for these advances. Studies in this laboratory support the view that interesting new discoveries are yet to be made. A new lectin was recently isolated from a fungus (Polyporous squamosus) that recognizes the Neu5Ac alpha2,6 Gal beta1,4 GlcNAc/Glc trisaccharide epitope with high affinity. The lectin does not interact with alpha2,3-linked Neu5Ac or Neu5Ac alpha2,6 GalNAc groups as occur in ovine submaxillary mucin. An unusual lectin with two distinctly different carbohydrate-binding sites is present in tubers of Xanthosoma sagittifolium (L). One species of sites recognizes clusters of oligomannosyl residues. The other type of binding site best accommodates a nonsialylated, triantennary oligosaccharide having LacNAc or Lacto-N-biose (Gal beta1,3GlcNAc) groups at its three nonreducing termini. The banana lectin has also been studied. It recognizes both alpha and beta1,3-linked glucosyl oligosaccharides, generates a precipitin curve with the branched trisaccharide Man alpha1,6[Man alpha1,3]Man, and binds to beta-glucans containing beta1,6-glucosyl end groups.


Assuntos
Lectinas/química , Lectinas/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Carboidratos/química , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Relação Estrutura-Atividade
17.
Eur J Biochem ; 269(17): 4335-41, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12199712

RESUMO

A novel lectin was isolated from leaves of the Japanese cycad, Cycas revoluta Thunb. (gymnosperm), and its characteristics including amino acid composition, molecular mass, carbohydrate binding specificity and partial amino acid sequences were examined. The inhibition analysis of hemagglutinating activity with various sugars showed that the lectin has a carbohydrate-binding specificity similar to those of mannose recognizing, jacalin-related lectins. Partial amino acid sequences of the lysylendopeptic peptides shows that the lectin might have a repeating structure and belong to the jacalin-related lectin family.


Assuntos
Antivirais/química , Cycadopsida/química , Lectinas/química , Folhas de Planta/química , Lectinas de Plantas/química , Sequência de Aminoácidos , Antivirais/metabolismo , Metabolismo dos Carboidratos , Carboidratos/farmacologia , Cycadopsida/metabolismo , Endopeptidases/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Hemaglutinação/efeitos dos fármacos , Japão , Lectinas/isolamento & purificação , Lectinas/metabolismo , Manose/química , Dados de Sequência Molecular , Peso Molecular , Peptídeos/análise , Peptídeos/metabolismo , Lectinas de Plantas/metabolismo , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
18.
Clin Exp Metastasis ; 19(1): 1-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11918078

RESUMO

Past studies have shown that carbohydrate residues reactive with the Griffonia simplicifolia isolectin B4 (GS I-B4) are present on the surface of highly-malignant murine sarcoma cells but are lacking or expressed in much lower amounts on the surface of low-malignant cells isolated from the same parent tumors (Am J Pathol 111: 27; J Nat Cancer Inst 71: 1281). In the present study it is shown that an antibody which recognizes the trisaccharide Galalpha1-3Galbeta1-4GlcNAc- is reactive with the highly-malignant cells but is non-reactive with the low-malignant cells. Further studies show that the high-malignant cells not only bind GS 1-B4 but also bind Evonymus europaea lectin (which like GS I-B4 recognizes terminal galactose in alpha1-3 linkage) and Erythina crystagalli lectin (which recognizes sub-terminal galactose in the beta1-4 linkage--e.g., Galbeta1-4GlcNAc). In contrast, the low malignant cells bind Erythina crystagalli lectin as efficiently as the high malignant cells but do not bind (or bind much smaller amounts of) either GS I-B4 or Evonymus europaea lectin. The present studies also show that there is no significant difference between high- and low-malignant cells in expression of alpha-galactosidase activity. In contrast, the high-malignant cells express high levels of alpha-galactosyl transferase activity while this enzyme is virtually undetectable in low-malignant cells. Taken together, these studies indicate that differential expression of a single monosaccharide residue distinguishes high- and low-malignant murine sarcoma cells. These studies also identify a mechanism to account for surface carbohydrate differences between the high- and low-malignant cells.


Assuntos
Antígenos de Neoplasias/análise , Peptídeos Catiônicos Antimicrobianos , Biomarcadores Tumorais/análise , Lectinas de Plantas , Sarcoma Experimental/química , Trissacarídeos/análise , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Northern Blotting , Configuração de Carboidratos , Sequência de Carboidratos , Galactosiltransferases/análise , Galactosiltransferases/genética , Lectinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Invasividade Neoplásica , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas de Plantas/farmacologia , RNA Mensageiro/análise , RNA Neoplásico/análise , Sarcoma Experimental/patologia , Trissacarídeos/imunologia , Trissacarídeos/metabolismo , alfa-Galactosidase/farmacologia
19.
J Biol Chem ; 277(17): 14996-5001, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11836253

RESUMO

A blood group B-specific lectin from the mushroom Marasmius oreades (MOA) was investigated with respect to its molecular structure and carbohydrate binding properties. SDS-PAGE mass spectrometric analysis showed it to consist of an intact (H; 33 kDa) and truncated (L; 23 kDa) subunit in addition to a small polypeptide (P; 10 kDa). Isolation in the presence of EDTA produced only the H subunits, indicating that the latter two are formed by metalloprotease cleavage of the intact H subunit. Tryptic digestion of the H, L, and P polypeptide chains followed by mass spectral analysis supports this view. The lectin strongly precipitated blood group type B substance, was nonreactive with type A substance, and reacted weakly with type H substance. Carbohydrate binding studies reveal a high affinity for Galalpha1,3Gal (but not for the isomeric alpha1,2-, alpha1,4-, and alpha1,6-disaccharides); Galalpha1,3Galbeta1,4GlcNAc; and the type B branched trisaccharide. MOA also reacts strongly with murine laminin from the Engelbreth-Holm-Swarm sarcoma and bovine thyroglobulin, both of which contain multiple Galalpha1,3Galbeta1,4GlcNAc end groups. This linear B trisaccharide is a component of porcine tissues and organs, preventing their transplantation into humans. MOA also shares carbohydrate recognition of this trisaccharide with toxin A elaborated by Clostridium difficile.


Assuntos
Agaricales/química , Aglutininas/imunologia , Carboidratos/imunologia , Epitopos/imunologia , Lectinas/metabolismo , Transplante Heterólogo , Aglutininas/química , Animais , Sequência de Carboidratos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Epitopos/química , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA