Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 29: 426-436, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273900

RESUMO

Transient transfection of mammalian cells using plasmid DNA is a standard method to produce adeno-associated virus (AAV) vectors allowing for flexible and scalable manufacture. Typically, three plasmids are used to encode the necessary components to facilitate vector production; however, a dual-plasmid system, termed pDG, was introduced over 2 decades ago demonstrating two components could be combined resulting in comparable productivity to triple transfection. We have developed a novel dual-plasmid system, pOXB, with an alternative arrangement of sequences that results in significantly increased AAV vector productivity and percentage of full capsids packaged in comparison to the pDG dual design and triple transfection. Here, we demonstrate the reproducibility of these findings across seven recombinant AAV genomes and multiple capsid serotypes as well as the scalability of the pOXB dual-plasmid transfection at 50-L bioreactor scale. Purified drug substance showed a consistent product quality profile in line with triple-transfected vectors, except for a substantial improvement in intact genomes packaged using the pOXB dual- transfection system. Furthermore, pOXB dual- and triple-transfection-based vectors performed consistently in vivo. The pOXB dual plasmid represents an innovation in AAV manufacturing resulting in significant process gains while maintaining the flexibility of a transient transfection platform.

2.
Sci Transl Med ; 15(677): eabo1815, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599002

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (µDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-µDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; µDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Cães , Humanos , Recém-Nascido , Camundongos , Distrofina/genética , Distrofina/metabolismo , Terapia Genética , Coração , Músculo Esquelético/metabolismo , Músculos/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
3.
Hum Gene Ther ; 32(15-16): 850-861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33397196

RESUMO

Recombinant adeno-associated viral (rAAV) vector-based gene therapy has been adapted for use in more than 100 clinical trials. This is mainly because of its excellent safety profile, ability to target a wide range of tissues, stable transgene expression, and significant clinical benefit. However, the major challenge is to produce a high-titer, high-potency vector to achieve a better therapeutic effect. Even though the three plasmid-based transient transfection method is currently being used for AAV production in many clinical trials, there are complications associated with scalability and it is not cost-effective. Other methods require either large-scale production of two herpes simplex viruses, rHSV-RepCap and rHSV-GOI (gene of interest), with high titers, or a stable cell line with high titer wild-type adenovirus infection. Both of these options make the process even more complex. To address this issue, we have developed a stable cell line-based production with the use of only one rHSV-RepCap virus. Using this new methodology in small-scale production, we achieved ∼1-6 E + 04 vg/cell of AAV9 in the top producer clones. Large-scale production in 10-CS (10-Cell Stack) of one of the top producing clones resulted in ∼1-2 E + 13 vg/10-CS with 50% of full capsid ratio after purification. This method could potentially be adapted to suspension cells. The major advantage of this novel methodology is that by using the rHSV-RepCap virus, high titer AAV can be produced with any GOI containing a stable adherent or suspension producer cell line. The use of this AAV production platform could be beneficial for the treatment of many diseases.


Assuntos
Dependovirus , Vetores Genéticos , Linhagem Celular , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Transfecção
4.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592687

RESUMO

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Doença de Sandhoff/terapia , Animais , Gerenciamento Clínico , Modelos Animais de Doenças , Gangliosídeo G(M2)/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Camundongos , Mutação , Doença de Sandhoff/genética , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , Transgenes , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
5.
Mol Cancer Ther ; 17(6): 1251-1258, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29654062

RESUMO

Glioblastoma (GBM) is the most common and lethal form of primary brain tumor with dismal median and 2-year survivals of 14.5 months and 18%, respectively. The paucity of new therapeutic agents stems from the complex biology of a highly adaptable tumor that uses multiple survival and proliferation mechanisms to circumvent current treatment approaches. Here, we investigated the potency of a new generation of siRNAs to silence gene expression in orthotopic brain tumors generated by transplantation of human glioma stem-like cells in athymic nude mice. We demonstrate that cholesterol-conjugated, nuclease-resistant siRNAs (Chol-hsiRNAs) decrease mRNA and silence luciferase expression by 90% in vitro in GBM neurospheres. Furthermore, Chol-hsiRNAs distribute broadly in brain tumors after a single intratumoral injection, achieving sustained and potent (>45% mRNA and >90% protein) tumor-specific gene silencing. This readily available platform is sequence-independent and can be adapted to target one or more candidate GBM driver genes, providing a straightforward means of modulating GBM biology in vivoMol Cancer Ther; 17(6); 1251-8. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/genética , Inativação Gênica , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hum Gene Ther ; 28(6): 510-522, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132521

RESUMO

GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in ß-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or ß-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and ß-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/ß developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/ß, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/ß intracranial injection among different species, despite encoding for self-proteins.


Assuntos
Dependovirus/genética , Discinesias/etiologia , Gangliosidoses GM2/terapia , Vetores Genéticos/efeitos adversos , Necrose/etiologia , Neurônios/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Animais , Apatia , Dependovirus/metabolismo , Modelos Animais de Doenças , Discinesias/genética , Discinesias/metabolismo , Discinesias/patologia , Feminino , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/patologia , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Neurônios/patologia , Subunidades Proteicas/efeitos adversos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tálamo/metabolismo , Tálamo/patologia , Transgenes , Substância Branca/metabolismo , Substância Branca/patologia , beta-N-Acetil-Hexosaminidases/efeitos adversos , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Cancer Cell ; 19(3): 359-71, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21397859

RESUMO

High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dano ao DNA , Glioma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos da radiação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Citometria de Fluxo , Glioma/genética , Glioma/patologia , Células HEK293 , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/efeitos da radiação , Fator de Transcrição 2 de Oligodendrócitos , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genética
8.
Mol Cell Biol ; 30(24): 5787-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20956556

RESUMO

Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.


Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antioxidantes/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patologia , Ataxia Telangiectasia/fisiopatologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Nucleares , Peroxidases , Proteínas/genética , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA