Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447092

RESUMO

Natural reserves play a fundamental role in maintaining flora and fauna biodiversity, but the biochemical characteristics of such ecosystems have been studied in an extremely fragmentary way. For the first time, mineral composition and antioxidant status of three systematic groups of organisms, lichens (Diplischistes ocellatus), mushrooms (Calvatia candida and Battarrea phalloides) and wormwood (Artemisia lerchiana) have been described at the territory of Bogdinsko-Baskunchak Nature Reserve (Astrakhan region, Russia), characterized by high salinity and solar radiation, and water deficiency. Through ICP-MS, it was determined that scale lichen D. ocellatus accumulated up to 10-15% Ca, 0.5% Fe, 15 mg kg-1 d.w. iodine (I), 54.5 mg kg-1 Cr. Battarrea phalloides demonstrated anomalously high concentrations of B, Cu, Fe, Mn Se, Zn, Sr and low Na levels, contrary to Calvatia candida mushrooms accumulating up to 10,850 mg kg-1 Na and only 3 mg kg-1 Sr. The peculiarity of A. lerchiana plants was the high accumulation of B (22.23 mg kg-1 d.w.), Mn (57.48 mg kg-1 d.w.), and antioxidants (total antioxidant activity: 68.6 mg GAE g-1 d.w.; polyphenols: 21.0 mg GAE g-1 d.w.; and proline: 5.45 mg g-1 d.w.). Diploschistes ocellatus and Calvatia candida demonstrated the lowest antioxidant status: 3.6-3.8 mg GAE g-1 d.w. total antioxidant activity, 1.73-2.10 mg GAE g-1 d.w. polyphenols and 2.0-5.3 mg g-1 d.w. proline. Overall, according to the elemental analysis of lichen from Baskunchak Nature Reserve compared to the Southern Crimean seashore, the vicinity of Baskunchak Salty Lake elicited increased environmental levels of Cr, Si, Li, Fe, Co, Ni and Ca.

2.
Plants (Basel) ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050049

RESUMO

Biostimulants help plants cope with environmental stresses and improve vegetable yield and quality. This study was conducted to determine the protein hydrolysate (PH) effect of three different durations (weekly applications: three, six, or nine times plus an untreated control) in factorial combination with four soil electrical conductivities (EC: 1.5, 3.0, 4.5, or 6.0 mS·cm-1) on yield, fruit quality, and elemental composition of tomato 'miniplum' grown in a greenhouse. Fruit yield was best affected, during the summer, by six and nine biostimulant applications at EC 3.0 mS·cm-1, and in the same season, the six treatments led to the highest fruit number with no difference compared to nine applications; during the winter, the three and six treatments improved the mentioned variables at each EC level. Fruits' dry residue and Brixo were positively affected by biostimulation both in summer and winter. In summer, the 6.0 mS·cm-1 EC led to the highest dry residue and Brixo values, though the latter did not show any significant difference compared to 4.5 mS·cm-1; in winter, the best results corresponded to 4.5 and 6.0 mS·cm-1. A higher beneficial effect of PH on fruit antioxidant status, i.e., lycopene, polyphenols, ascorbic acid levels, and lipophilic (LAA) and hydrophilic (HAA) activity, was recorded in winter compared with summer. Positive correlations between polyphenols and LAA, as well as ascorbic acid content and HAA were found for all EC and PH treatments. Most of the mineral elements tested demonstrated concentration stability, whereas the highest EC decreased P, Mg, Cu, and Se accumulation. The opposite effect was shown by PH application on Se and Mn levels, with P tending to increase. The concentrations of Fe, Zn, and Cu were the lowest under the longest duration of PH supply. These results further confirm the essential role of plant biostimulation in enhancing tomato yield and quality, with a particular focus on the treatment duration.

3.
Plants (Basel) ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111810

RESUMO

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.

4.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903880

RESUMO

Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.

5.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500339

RESUMO

Selenium (Se) biofortification of aromatic plants is a promising strategy to produce valuable functional food with high biological activity and enhanced essential oil yield. The experiment carried out in 2021 and 2022 on A. annua treated with sodium selenate or nano-Se sprayed on foliar apparatus demonstrated a significant increase in photosynthetic pigments, pectin, waxes, macro- and microelements and a decrease in malonic dialdehyde (MDA) accumulation. Contrary to literature reports, neither selenate nor nano-Se showed a beneficial effect on essential oil accumulation; the oil yield did not differ between the selenate treated and control plants but was halved by the nano-Se application. Extremely high variations in the number of essential oil components, as well as in the eucalyptol, artemisia ketone, camphor and germacrene D ratio in the 2021 and 2022 experiments were recorded. The analysis of the 2016-2022 data for oil yield and composition in the control plants revealed a direct correlation between the number of components and of solar flares, and a negative correlation between oil yield and the percentage of spotless days. Both control plants and plants fortified with selenium showed higher levels of germacrene D and lower levels of artemisia ketone in 2022, characterized by more remarkable solar activity compared to 2021. Nano-Se supply resulted in the highest percentage of germacrene D accumulation. The results of the present research highlight the importance of the solar activity effect on the essential oil yield and quality of aromatic plants.


Assuntos
Artemisia annua , Óleos Voláteis , Selênio , Ácido Selênico/farmacologia , Selênio/farmacologia , Selênio/análise , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Folhas de Planta/química
6.
Plants (Basel) ; 11(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235475

RESUMO

The importance of using the barks of trees and shrubs as powerful natural antioxidants suggests the necessity to evaluate the effect of different environmental factors on bark extracts' quality. The determination of total antioxidant activity (AOA) and polyphenol content (TP) in the bark of 58 tree and shrub species from 7 regions differing in mean annual temperature, insolation, humidity, salinity level, and altitude was performed. The above stress factors positively affected bark AOA but did not have a statistically significant effect on TP. The bark of trees grown in the seashore proximity was characterized by significantly higher AOA than samples gathered in other areas, similarly to the trees grown at high altitude. The bark antioxidant status of 18 species was described for the first time. New sources of powerful antioxidants were represented by the ornamental shrubs Cornus sanguinea and Cornus alba, which showed the highest AOA (169−171 mg GAE g−1 d.w.). Among the typical halophytes, Calligonum and Tamarix had high AOA (172 and 85 mg GAE g−1 d.w.), while in the bark of tamarisk, an Se accumulator, an Se concentration of about 900 µg kg−1 d.w. was recorded. A significant positive correlation was found between leaves and bark AOA in the Karadag Nature Reserve's deciduous trees (r = 0.898, p < 0.01). The relationship between bark AOA and TP was highly significant (r = 0.809; p < 0.001) for all samples except the mountainous ones. The results of the present research revealed new opportunities in successive bark utilization.

7.
Plants (Basel) ; 10(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34961204

RESUMO

Lamb's lettuce (Valerianella locusta L. Laterr.) is a leafy green vegetable that is rich in various biological active compounds and is widely used in ready-to-eat salads. The cultivation conditions and growth stage could affect the secondary metabolism in plants and thereby modify their food value. In the present study, the effect of selenium (Se) application in various concentrations (5.0, 10.0, and 20.0 µM) on the contents of Se, phenolic compounds, vitamin C, carotenoids, chlorophylls, and antioxidant activity of hydrophilic and lipophilic extracts of lamb's lettuce harvested at three growth stages (38, 52, and 66 days after sowing (DAS)) was studied. Se application significantly increased the Se concentration in the shoots (up to 124.4 µg g-1 dry weight), as well as the contents of chlorogenic acid, total flavonoids, total phenolics, ascorbic acid, chlorophyll b, and the antioxidant activity of hydrophilic and lipophilic extracts. A higher content of phenolic compounds and higher antioxidant activity of hydrophilic extracts was observed at the first growth stage (38 DAS). On the contrary, higher contents of lipophilic compounds (chlorophyll a, chlorophyll b, lutein, ß-carotene) and higher antioxidant activity of lipophilic extracts were found for shoots harvested at later stages (52 and 66 DAS).

8.
Plants (Basel) ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283805

RESUMO

Celery is one of the major nutraceutical vegetable species due to the high dietary and medicinal properties of all of its plant parts. Yield, growth and produce quality of six celery genotypes belonging to leafy (Elixir and Samurai), stalk (Atlant and Primus) or root (Egor and Dobrynya) types, as well as the distribution of biomass, sugars, mineral elements and antioxidants among the different plant parts, were assessed. Within the celery root type, cultivar Dobrynya resulted in higher yield than Egor, whereas the genotype did not significantly affect the marketable plant part production of leafy and stalk types. Leaf/petiole ratios relevant to biomass, total dissolved solids, sugars, ascorbic acid, flavonoids, antioxidant activity and ash, K, Zn, Fe, Mn, Cu and Se content were significantly affected by the celery type examined. Ash content was highest in the leaves and lowest in the roots. Celery antioxidant system was characterized by highly significant relationships between ascorbic acid, polyphenols, flavonoids, antioxidant activity and Zn. Among the celery types analyzed, the highest values of chlorophyll, Fe and Mn content as well as antioxidant activity were recorded in leaves from root genotypes, which suggests interesting nutraceutical prospects of the aforementioned plant parts for human utilization.

9.
Plants (Basel) ; 9(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197463

RESUMO

Utilization of arbuscular mycorrhizal fungi (AMF) for enhancing growth and development as well as production of essential oil in aromatic plants has been increasingly drawing research interest. In order to assess the AMF effects on different aromatic species, an open-field experiment was carried out using Artemisia dracunculus (tarragon), Lavandula angustifolia (lavender) and Hyssopus officinalis (hyssop). AMF stimulated the growth of tarragon and lavender plants, whereas hyssop showed a slight developmental slowing; nonetheless, a significant increase in essential oil content in the three species was seen. AMF application increased the biomass of A. dracunculus and H. officinalis by 20-35%. No differences in antioxidant activity and phenolics content were recorded at harvest between the control and AMF-inoculated plants, but the latter showed a significant increase in antioxidant status upon storage at high temperature and humidity compared to the untreated control. The enhancement of abiotic stress resistance during storage in plants inoculated with AMF was the highest in A. dracunculus, and the lowest in H. officinalis, while the untreated control plants showed a significant decrease in phenolics, ascorbic acid and chlorophyll content, as well as antioxidant activity, upon the abiotic stress. AMF inoculation differentially affected the mineral composition, increasing the accumulation of Se, I and Zn in A. dracunculus, and decreasing the levels of heavy metals and Co, Fe, Li, Mn in H. officinalis. Based on the outcome of the present research, AMF inoculation resulted in a significant enhancement of the overall performances of A. dracunculus, L. angustifolia and H. officinalis, and also in the improvement of plant antioxidant status upon storage in stress conditions.

10.
Plants (Basel) ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098151

RESUMO

The need to improve crop yield and quality, decrease the level of mineral fertilizers and pesticides/herbicides supply, and increase plants' immunity are important topics of agriculture in the 21st century. In this respect, arbuscular mycorrhizal fungi (AMF) may be considered as a crucial tool in the development of a modern environmentally friendly agriculture. The efficiency of AMF application is connected to genetic peculiarities of plant and AMF species, soil characteristics and environmental factors, including biotic and abiotic stresses, temperature, and precipitation. Among vegetable crops, Allium species are particularly reactive to soil mycorrhiza, due to their less expanded root apparatus surface compared to most other species. Moreover, Allium crops are economically important and able to synthesize powerful anti-carcinogen compounds, such as selenomethyl selenocysteine and gamma-glutamyl selenomethyl selenocysteine, which highlights the importance of the present detailed discussion about the AMF use prospects to enhance Allium plant growth and development. This review reports the available information describing the AMF effects on the seasonal, inter-, and intra-species variations of yield, biochemical characteristics, and mineral composition of Allium species, with a special focus on the selenium accumulation both in ordinary conditions and under selenium supply.

11.
Plants (Basel) ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936528

RESUMO

Biofortification of garlic and onion plants with selenium and arbuscular mycorrhizal fungi inoculation are considered beneficial for producing functional food with anticarcinogenic properties. The effects of arbuscular mycorrhizal fungi (AMF) inoculation, sodium selenate foliar application, and the combination AMF + selenium (Se), compared to an untreated control, were assessed regarding the bulb yield, biochemical characteristics, and mineral composition. AMF + Se application resulted in the highest yield, monosaccharides, and Se content in both garlic and onion bulbs; and an increase of ascorbic acid and flavonoids in onion, and flavonoids in garlic. The highest bulb concentrations of P and K were recorded under the AMF + Se application, Ca was best affected by AMF, and Mg accumulation was highest under all the treatments in garlic and upon AMF + Se application in onion bulbs. Contrary to garlic, onion bulbs were characterized by a remarkable increase in microelements (B, Cu, Fe, Mn, Si, Zn) under the AMF + Se treatment. Selenium, either with or without AMF application, promoted the accumulation of B and Si in onion and Mo and Zn in garlic bulbs. It can be inferred that the interaction between AMF and Se is highly specific, differing for garlic and onion grown in similar environmental conditions in Grozny region, Chechen Republic.

12.
Plants (Basel) ; 8(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434261

RESUMO

Research was carried out on onion landrace (Ramata di Montoro) for seed production in southern Italy, with the aim to evaluate the effects on yield and quality of four bulb planting times in factorial combination with four densities, using a split plot design with three replicates. The number of flower stalks per plant, their height and diameter, and the inflorescence diameter decreased with the bulb planting delay and density increase. The highest plant leaf area and LAI (leaf area index), seed yield, number, and mean weight were recorded with the earliest planting time, with the lowest bulb density eliciting the highest plant leaf area but the lowest LAI and seed yield per hectare. The ratio between seeds and inflorescence weight, and seed germinability, decreased with the planting delay and density increase. Seed oil, protein, and antioxidant content (polyphenols and selenium) were highest with the last crop cycle. The polyunsaturated fatty acids, predominant in oil, increased with planting time delay, whereas the monounsaturated fatty acids decreased. Linoleic, oleic, and palmitic acid prevailed among polyunsaturated, monounsaturated, and saturated fatty acids, respectively. Planting from 20 December to 10 January with 3.3 cold-stored bulbs per m2 was the most effective combination in terms of seed yield per hectare, whereas seed oil content and quality were the best, with the last crop cycle starting on 21 February, independent of bulb density.

13.
Plants (Basel) ; 8(4)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999682

RESUMO

Plant biofortification with selenium in interaction with the application of an arbuscular mycorrhizal fungi (AMF)-based formulate,with the goal of enhancing Se bioavailability, is beneficial for the development of the environmentally friendly production of functional food with a high content of this microelement. Research was carried out in order to assess the effects of an AMF-based formulate and a non-inoculated control in factorial combination with two selenium treatments with an organic (selenocystine) or inorganic form (sodium selenate) and a non-treated control on the yield, quality, antioxidant properties, and elemental composition of shallot (Allium cepa L. Aggregatum group). Selenocystine showed the best effect on the growth and yield of mycorrhized plants, whereas sodium selenate was the most effective on the non-inoculated plants. The soluble solids, total sugars, monosaccharides, titratable acidity, and proteins attained higher values upon AMF inoculation. Sodium selenate resulted in higher soluble solids, total sugars and monosaccharide content, and titratable acidity than the non-treated control, and it also resulted in higher monosaccharides when compared to selenocystine; the latter showed higher protein content than the control. Calcium, Na, S, and Cl bulb concentrations were higher in the plants inoculated with the beneficial microorganisms. Calcium and sodium concentrations were higher in the bulbs of plants treated with both the selenium forms than in the control. Selenocystine-treated plants showed enhanced accumulation of sulfur and chlorine compared to the untreated plants. The AMF inoculation increased the bulb selenium content by 530%, and the Se biofortification with selenocystine and sodium selenate increased this value by 36% and 21%, respectively, compared to control plants. The AMF-based formulate led to increases in ascorbic acid and antioxidant activity when compared to the non-inoculated control. The bulb ascorbic acid was increased by fortification with both selenium forms when compared to the non-treated control. The results of our investigation showed that both AMF and selenium application represent environmentally friendly strategies to enhance the overall yield and quality performances of shallot bulbs, as well as their selenium content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA