Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 395(1): 96-110, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25176043

RESUMO

To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.


Assuntos
Anexina A4/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Anexina A4/genética , Apoptose/genética , Sequência de Bases , Caspase 3/metabolismo , Sobrevivência Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fígado/citologia , Fígado/embriologia , Microscopia Confocal , Dados de Sequência Molecular , Pâncreas/citologia , Pâncreas/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
J Biol Chem ; 289(35): 24238-49, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006253

RESUMO

It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Fibrossarcoma/patologia , Metástase Neoplásica , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Fibrossarcoma/enzimologia , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Proteólise
3.
Cell Commun Signal ; 12: 15, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24618420

RESUMO

BACKGROUND: The full-length membrane protein tyrosine kinase 7 (PTK7) pseudokinase, an important component of the planar cell polarity and the Wnt canonical and non-canonical pathways, is a subject of step-wise proteolysis in cells and tissues. The proteolysis of PTK7 involves membrane type-matrix metalloproteinase (MT1-MMP), members of the Disintegrin Domain and Metalloproteinase (ADAM) family, and γ-secretase. This multi-step proteolysis results in the generation of the digest fragments of PTK7. These fragments may be either liberated into the extracellular milieu or retained on the plasma membrane or released into the cytoplasm and then transported into the nucleus. RESULTS: We employed the genome-wide transcriptional and kinome array analyses to determine the role of the full-length membrane PTK7 and its proteolytic fragments in the downstream regulatory mechanisms, with an emphasis on the cell migration-related genes and proteins. Using fibrosarcoma HT1080 cells stably expressing PTK7 and its mutant and truncated species, the structure of which corresponded to the major PTK7 digest fragments, we demonstrated that the full-length membrane 1-1070 PTK7, the N-terminal 1-694 soluble ectodomain fragment, and the C-terminal 622-1070 and 726-1070 fragments differentially regulate multiple genes and signaling pathways in our highly invasive cancer cell model. Immunoblotting of the selected proteins were used to validate the results of our high throughput assays. CONCLUSIONS: Our results suggest that PTK7 levels need to be tightly controlled to enable migration and that the anti-migratory effect of the full-length membrane PTK7 is linked to the down-regulation of multiple migration-related genes and to the activation of the Akt and c-Jun pathway. In turn, the C-terminal fragments of PTK7 act predominantly via the RAS-ERK and CREB/ATF1 pathway and through the up-regulation of cadherin-11. In general, our data correlate well with the distinct functionality of the full-length receptor tyrosine kinases and their respective intracellular domain (ICD) proteolytic fragments.


Assuntos
Moléculas de Adesão Celular/metabolismo , Genoma Humano , Fragmentos de Peptídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteólise , Transcriptoma
4.
J Biol Chem ; 288(48): 34956-67, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24145028

RESUMO

Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.


Assuntos
Bacteroides fragilis/genética , Inflamação/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Sequência de Aminoácidos , Bacteroides fragilis/patogenicidade , Ilhas Genômicas/genética , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloendopeptidases/genética , Microbiota , Neoplasias/genética , Neoplasias/patologia , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteólise , Especificidade por Substrato
5.
J Biol Chem ; 288(28): 20568-80, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23733191

RESUMO

Proteolytic activity of cell surface-associated MT1-matrix metalloproteinase (MMP) (MMP-14) is directly related to cell migration, invasion, and metastasis. MT1-MMP is regulated as a proteinase by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibition by tissue inhibitors of MMPs (TIMPs) and self-proteolysis. MT1-MMP is also regulated as a membrane protein through its internalization and recycling. Routine immunohistochemistry, flow cytometry, reverse transcription-PCR, and immunoblotting methodologies do not allow quantitative imaging and assessment of the cell-surface levels of the active, TIMP-free MT1-MMP enzyme. Here, we developed a fluorescent reporter prototype that targets the cellular active MT1-MMP enzyme alone. The reporter (MP-3653) represents a liposome tagged with a fluorochrome and functionalized with a PEG chain spacer linked to an inhibitory hydroxamate warhead. Our studies using the MP-3653 reporter and its inactive derivative demonstrated that MP-3653 can be efficiently used not only to visualize the trafficking of MT1-MMP through the cell compartment, but also to quantify the femtomolar range amounts of the cell surface-associated active MT1-MMP enzyme in multiple cancer cell types, including breast carcinoma, fibrosarcoma, and melanoma. Thus, the levels of the naturally expressed, fully functional, active cellular MT1-MMP enzyme are roughly equal to 1 × 10(5) molecules/cell, whereas these levels are in a 1 × 10(6) range in the cells with the enforced MT1-MMP expression. We suggest that the reporter we developed will contribute to the laboratory studies of MT1-MMP and then, ultimately, to the design of novel, more efficient prognostic approaches and personalized cancer therapies.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Imagem Molecular/métodos , Neoplasias/enzimologia , Imagem Óptica/métodos , Animais , Ligação Competitiva , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Fluoresceínas/química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Células MCF-7 , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/genética , Microscopia de Fluorescência , Mutação , Neoplasias/genética , Neoplasias/patologia , Compostos Orgânicos/química , Ligação Proteica , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo
6.
J Biol Chem ; 287(50): 42009-18, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23095747

RESUMO

The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP(621)↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Moléculas de Adesão Celular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteólise , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas ADAM/genética , Transporte Ativo do Núcleo Celular/genética , Secretases da Proteína Precursora do Amiloide/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Fibrossarcoma/enzimologia , Fibrossarcoma/genética , Fibrossarcoma/patologia , Humanos , Metaloproteinase 14 da Matriz/genética , Invasividade Neoplásica , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética , Solubilidade
7.
Cancer Res ; 72(9): 2339-49, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406620

RESUMO

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple MMPs instead of MT1-MMP alone. In our search for noncatalytic inhibitors of MT1-MMP, we compared the protumorigenic activity of wild-type MT1-MMP with an MT1-MMP mutant lacking PEX (ΔPEX). In contrast to MT1-MMP, ΔPEX did not support tumor growth in vivo, and its expression resulted in small fibrotic tumors that contained increased levels of collagen. Because these findings suggested an important role for PEX in tumor growth, we carried out an inhibitor screen to identify small molecules targeting the PEX domain of MT1-MMP. Using the Developmental Therapeutics Program (National Cancer Institute/NIH), virtual ligand screening compound library as a source and the X-ray crystal structure of PEX as a target, we identified and validated a novel PEX inhibitor. Low dosage, intratumoral injections of PEX inhibitor repressed tumor growth and caused a fibrotic, ΔPEX-like tumor phenotype in vivo. Together, our findings provide a preclinical proof of principle rationale for the development of novel and selective MT1-MMP inhibitors that specifically target the PEX domain.


Assuntos
Hemopexina/química , Inibidores de Metaloproteinases de Matriz , Inibidores de Proteases/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/biossíntese , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 286(39): 34215-23, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21832072

RESUMO

Invasive cancers use pericellular proteolysis to breach the extracellular matrix and basement membrane barriers and invade the surrounding tissue. Proinvasive membrane type-1 matrix metalloproteinase (MT1-MMP) is the primary mediator of proteolytic events on the cancer cell surface. MT1-MMP is synthesized as a zymogen. The latency of MT1-MMP is maintained by its N-terminal inhibitory prodomain. In the course of MT1-MMP activation, the R(108)RKR(111) ↓ Y(112) prodomain sequence is processed by furin. The intact prodomain released by furin alone, however, is a potent inhibitor of the emerging MT1-MMP enzyme. Evidence suggests that the prodomain undergoes intradomain cleavage at the PGD ↓ L(50) site followed by the release of the degraded prodomain by furin cleavage that finalizes the two-step activation event. These cleavages, only if combined, cause the activation of MT1-MMP. The significance of the intradomain cleavage in the protumorigenic program of MT1-MMP, however, remained unidentified. To identify this important parameter, in our current study, we used the cells that expressed the wild-type prodomain-based fluorescent biosensor and the mutant biosensor with the inactivated PGD↓L(50) cleavage site (L50D mutant) and also the cells with the enforced expression of the wild-type and L50D mutant MT1-MMP. Using cell-based tests, orthotopic breast cancer xenografts in mice, and genome-wide transcriptional profiling of cultured cells and tumor xenografts, we demonstrated that the intradomain cleavage of the PGD ↓ L(50) sequence of the prodomain is essential for the protumorigenic function of MT1-MMP. Our results emphasize the importance of the intradomain cleavages resulting in the inactivation of the respective inhibitory prodomains not only for MT1-MMP but also for other MMP family members.


Assuntos
Neoplasias da Mama/enzimologia , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Substituição de Aminoácidos , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ativação Enzimática/genética , Feminino , Furina/genética , Furina/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Transplante Heterólogo
9.
J Biol Chem ; 286(23): 20970-6, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518755

RESUMO

Membrane PTK7 pseudo-kinase plays an essential role in planar cell polarity and the non-canonical Wnt pathway in vertebrates. Recently, a new N-ethyl-N-nitrosourea-induced mutant named chuzhoi (chz) was isolated in mice. chz embryos have severe birth defects, including a defective neural tube, defective heart and lung development, and a shortened anterior-posterior body axis. The chz mutation was mapped to the Ala-Asn-Pro tripeptide insertion into the junction region between the fifth and the sixth Ig-like domains of PTK7. Unexpectedly, chz reduced membrane localization of the PTK7 protein. We hypothesized and then proved that the chz mutation caused an insertion of an additional membrane type 1 matrix metalloproteinase cleavage site in PTK7 and that the resulting aberrant proteolysis of chz affected the migratory parameters of the cells. It is likely that aberrations in the membrane type 1 matrix metalloproteinase/PTK7 axis are detrimental to cell movements that shape the body plan and that chz represents a novel model system for increasing our understanding of the role of proteolysis in developmental pathologies, including congenital defects.


Assuntos
Anormalidades Induzidas por Medicamentos/enzimologia , Moléculas de Adesão Celular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Anormalidades Induzidas por Medicamentos/genética , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Etilnitrosoureia/efeitos adversos , Etilnitrosoureia/farmacologia , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Mutação , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética
10.
J Biol Chem ; 285(46): 35740-9, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20837484

RESUMO

PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Embrião não Mamífero/embriologia , Metaloproteinase 14 da Matriz/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Sítios de Ligação/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Hibridização In Situ , Metaloproteinase 14 da Matriz/genética , Dados de Sequência Molecular , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
J Virol Methods ; 169(2): 290-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20691207

RESUMO

A mass spectrometry (MS) approach was used to analyze viral core proteins of the murine leukemia virus (MuLV)-based gene delivery vector. The retroviral particles produced by traditional methods were concentrated and purified by ultracentrifugation and spin column for matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) MS. MALDI application detected all core MuLV proteins, partial degradation of p10, phosphorylation of p12, as well as the previously unknown formation of a polymeric supramolecular complex between p15 and p30 core proteins. ESI provided information on the post-translational modifications of MuLV core proteins. Data suggest myristoylation of p15 and oxidation of methionine residues in both p12 and p30, whereas cysteine residues in p10, p15 and p30 were not oxidized. The current study demonstrates that MALDI and ESI are efficient tools for viral core protein analysis and can be used as analytical tools in virology and biotechnology of gene delivery vectors.


Assuntos
Vírus da Leucemia Murina/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas do Core Viral/química , Vírus da Leucemia Murina/isolamento & purificação , Processamento de Proteína Pós-Traducional , Ultracentrifugação , Proteínas do Core Viral/isolamento & purificação
12.
J Biol Chem ; 285(36): 27726-36, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20605791

RESUMO

The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.


Assuntos
Furina/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína
13.
PLoS One ; 5(6): e11305, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585585

RESUMO

Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR / STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Técnicas Biossensoriais , Furina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Primers do DNA , Transferência Ressonante de Energia de Fluorescência , Furina/genética , Furina/isolamento & purificação , Humanos , Hidrólise , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional
14.
J Biol Chem ; 285(25): 19647-59, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20404328

RESUMO

Epigenetic parameters (DNA methylation, histone modifications, and miRNAs) play a significant role in cancer. To identify the common epigenetic signatures of both the individual matrix metalloproteinases (MMPs) and the additional genes, the function of which is also linked to proteolysis, migration, and tumorigenesis, we performed epigenetic profiling of 486 selected genes in unrelated non-migratory MCF-7 breast carcinoma and highly migratory U251 glioma cells. Genome-wide transcriptional profiling, quantitative reverse transcription-PCR, and microRNA analyses were used to support the results of our epigenetic studies. Transcriptional silencing in both glioma and breast carcinoma cells predominantly involved the repressive histone H3 Lys-27 trimethylation (H3K27me3) mark. In turn, epigenetic stimulation was primarily performed through a gain in the histone H3 Lys-4 dimethylation (H3K4me2) and H3 hyperacetylation and by a global reduction of H3K27me3. Inactive pro-invasive genes in MCF-7 cells but not in U251 cells frequently exhibited a stem cell-like bivalent mark (enrichment in both H3K27me3 and H3K4me2), a characteristic of developmental genes. In contrast with other MMPs, MMP-8 was epigenetically silenced in both cell types, thus providing evidence for the strict epigenetic control of this anti-tumorigenic proteinase in cancer. Epigenetic stimulation of multiple collagen genes observed in cultured glioma cells was then directly confirmed using orthotopic xenografts and tumor specimens. We suggest that the epigenetic mechanisms allow gliomas to deposit an invasion-promoting collagen-enriched matrix and then to use this matrix to accomplish their rapid migration through the brain tissue.


Assuntos
Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Linhagem Celular Tumoral , Metilação de DNA , Dimerização , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Transplante de Neoplasias
15.
Int J Biochem Cell Biol ; 42(6): 987-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20197107

RESUMO

Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/fisiologia , Toxinas Bacterianas/metabolismo , Furina/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Antraz/prevenção & controle , Vacinas contra Antraz , Linhagem Celular Tumoral , Clonagem Molecular , Biologia Computacional , Drosophila , Humanos , Fragmentos de Peptídeos/síntese química , Especificidade por Substrato
16.
Int J Cancer ; 126(5): 1067-78, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551841

RESUMO

Both invasion-promoting MT1-MMP and its physiological inhibitor TIMP-2 play a significant role in tumorigenesis and are identified in the most aggressive cancers. Despite its antiproteolytic effects in vitro, clinical data suggest that TIMP-2 expression is positively associated with tumor recurrence, thus emphasizing the wide-ranging role of TIMP-2 in malignancies. To shed light on this role of TIMP-2, we report that low concentrations of TIMP-2, by interacting with MT1-MMP (a specific membrane receptor of TIMP-2), induce the MEK/ERK signaling cascade in fibrosarcoma HT1080 cells which express MT1-MMP naturally. TIMP-2 binding with cell surface-associated MT1-MMP stimulates phosphorylation of MEK1/2, which is upstream of ERK1/2, and the ERK1/2 substrate p90RSK. Consistent with volumes of literature, we confirmed that the activation of ERK stimulated cell migration. Both the transcriptional silencing of MT1-MMP and the inhibition of MEK1/2 reversed the signaling effects of TIMP-2/MT1-MMP while the active site-targeting MMP inhibitor GM6001 did not. Our data suggest that both the interactions of TIMP-2 with MT1-MMP, which activate the pro-migratory ERK signaling cascade,and the conventional inhibition of MT1-MMP's catalytic activity by TIMP-2, play a role in the invasion-promoting function of MT1-MMP. The TIMP-2-induced stimulation of ERK signaling in cancer cells explains the direct, as opposed to the inverse, association of TIMP-2 expression with poor prognosis in cancer.


Assuntos
Movimento Celular/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica , Transdução de Sinais/fisiologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , RNA Interferente Pequeno
17.
Mol Cancer Ther ; 8(6): 1515-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19509255

RESUMO

Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. The current suboptimal efficiency and selectivity drugs have therapeutic limitations and induce concomitant side effects. Recently, novel cancer therapies based on the use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have emerged. TRAIL, a key component of the natural antitumor immune response, selectively kills many tumor cell types. Earlier studies with recombinant TRAIL, however, revealed its many shortcomings including a short half-life, off-target toxicity, and existence of TRAIL-resistant tumor cells. We improved the efficacy of recombinant TRAIL by redesigning its structure and the expression and purification procedures. The result is a highly stable leucine zipper (LZ)-TRAIL chimera that is simple to produce and purify. This chimera functions as a trimer in a manner that is similar to natural TRAIL. The formulation of the recombinant LZ-TRAIL we have developed has displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. Our results have shown that the half-life of LZ-TRAIL is improved and now exceeds 1 h in mice compared with a half-life of only minutes reported earlier for recombinant TRAIL. We have concluded that our LZ-TRAIL construct will serve as a foundation for a new generation of fully human LZ-TRAIL proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.


Assuntos
Zíper de Leucina/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/patologia , Engenharia de Proteínas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biochem J ; 420(1): 37-47, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19232058

RESUMO

Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Metabolismo Energético , Feminino , Humanos , Peptídeo Hidrolases/metabolismo , Mapeamento de Interação de Proteínas
19.
Cancer Res ; 68(11): 4086-96, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18519667

RESUMO

Invasion-promoting MT1-MMP is directly linked to tumorigenesis and metastasis. Our studies led us to identify those genes, the expression of which is universally linked to MT1-MMP in multiple tumor types. Genome-wide expression profiling of MT1-MMP-overexpressing versus MT1-MMP-silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 11 genes, the expression of which correlated firmly and universally with that of MT1-MMP (P < 0.00001). These genes included regulators of energy metabolism (NNT), trafficking and membrane fusion (SLCO2A1 and ANXA7), signaling and transcription (NR3C1, JAG1, PI3K delta, and CK2 alpha), chromatin rearrangement (SMARCA1), cell division (STK38/NDR1), apoptosis (DAPK1), and mRNA splicing (SNRPB2). Our subsequent extensive analysis of cultured cells, tumor xenografts, and cancer patient biopsies supported our data mining. Our results suggest that transcriptional reprogramming of the specific downstream genes, which themselves are associated with tumorigenesis, represents a distinctive "molecular signature" of the proteolytically active MT1-MMP. We suggest that the transactivation activity of MT1-MMP contributes to the promigratory cell phenotype, which is induced by this tumorigenic proteinase. The activated downstream gene network then begins functioning in unison with MT1-MMP to rework the signaling, transport, cell division, energy metabolism, and other critical cell functions and to commit the cell to migration, invasion, and, consequently, tumorigenesis.


Assuntos
Metaloproteinase 14 da Matriz/genética , Neoplasias/genética , Ativação Transcricional , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Biol Chem ; 283(5): 2793-803, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18032378

RESUMO

Hepatitis B virus infection is associated with hepatocellular carcinoma, claiming 1 million lives annually worldwide. To understand the carcinogenic mechanism of hepatitis B virus-encoded oncoprotein HBx, we explored the function of HBx interaction with its cellular target HBXIP. Previously, we demonstrated that viral HBx and cellular HBXIP control mitotic spindle formation, regulating centrosome splitting. By using various fragments of HBx, we determined that residues (137)CRHK(140) within HBx are necessary for binding HBXIP. Mutation of the (137)CRHK(140) motif in HBx abolished its ability to bind HBXIP and to dysregulate centrosome dynamics in HeLa and immortal diploid RPE-1 cells. Unlike wild-type HBx, which targets to centrosomes as determined by subcellular fractionation and immunofluorescence microscopy, HBx mutants failed to localize to centrosomes. Overexpression of viral HBx wild-type protein and knockdown of endogenous HBXIP altered centrosome assembly and induced modifications of pericentrin and centrin-2, two essential proteins required for centrosome formation and function, whereas HBXIP nonbinding mutants of HBx did not. Overexpression of HBXIP or fragments of HBXIP that bind HBx neutralized the effects of viral HBx on centrosome dynamics and spindle formation. These results suggest that HBXIP is a critical target of viral HBx for promoting genetic instability through formation of defective spindles and subsequent aberrant chromosome segregation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Antígenos da Hepatite B/fisiologia , Vírus da Hepatite B/fisiologia , Proteínas Oncogênicas Virais/fisiologia , Transativadores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Linhagem Celular , Centrossomo/fisiologia , Primers do DNA/genética , Instabilidade Genômica , Células HeLa , Antígenos da Hepatite B/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Oncogênicas Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/genética , Fuso Acromático/fisiologia , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA