RESUMO
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients.
Assuntos
Ácidos Nucleicos Livres , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Reparo do DNA/genética , Dano ao DNA/genética , Análise de Sequência de DNARESUMO
Prostate cancer (PCa) is the second most common malignant cancer and is a major cause of morbidity and mortality among men worldwide. There is still an urgent need for biomarkers applicable for diagnosis, prognosis, therapy prediction, or therapy monitoring in PCa. Liquid biopsies, including cell-free DNA (cfDNA) and circulating tumor cells (CTCs), are a valuable source for studying such biomarkers and are minimally invasive. In our study, we investigated the cfDNA of 34 progressive PCa patients, via targeted sequencing, for sequence variants and for the occurrence of CTCs, with a focus on androgen receptor splice variant 7 (AR-V7)-positive CTCs. The cfDNA content was associated with overall survival (OS; p = 0.014), disease-specific survival (DSS; p = 0.004), and time to treatment change (TTC; p = 0.001). Moreover, when considering all sequence variants grouped by their functional impact and allele frequency, a significant association with TTC (p = 0.017) was observed. When investigating only pathogenic or likely pathogenic gene variants, variants of the BRCA1 gene (p = 0.029) and the AR ligand-binding domain (p = 0.050) were associated with a shorter TTC. Likewise, the presence of CTCs was associated with a shorter TTC (p = 0.031). The presence of AR-V7-positive CTCs was associated with TTC (p < 0.001) in Kaplan-Meier analysis. Interestingly, all patients with AR-V7-positive CTCs also carried TP53 point mutations. Altogether, analysis of cfDNA and CTCs can provide complementary information that may support temporal and targeted treatment decisions and may elucidate the optimal choice within the variety of therapy options for advanced PCa patients.
Assuntos
Ácidos Nucleicos Livres/sangue , Variação Genética , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Análise de Sequência de DNA , Idoso , Idoso de 80 Anos ou mais , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/patologiaRESUMO
Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post-allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post-allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients' first relapses, which disappeared in the post-allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children's post-allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post-allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.
Assuntos
Biomarcadores Tumorais , Evolução Clonal/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Seleção Genética , Criança , Pré-Escolar , Biologia Computacional/métodos , Reparo do DNA , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunofenotipagem , Lactente , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Transplante Homólogo , Proteína Supressora de Tumor p53/genéticaRESUMO
The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.
Assuntos
Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Receptor ErbB-4/metabolismo , Quinases da Família src/metabolismo , Adolescente , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/patologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Meduloblastoma/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Quinases da Família src/genéticaRESUMO
Preleukemic clones carrying BCR-ABLp190 oncogenic lesions are found in neonatal cord blood, where the majority of preleukemic carriers do not convert into precursor B-cell acute lymphoblastic leukemia (pB-ALL). However, the critical question of how these preleukemic cells transform into pB-ALL remains undefined. Here, we model a BCR-ABLp190 preleukemic state and show that limiting BCR-ABLp190 expression to hematopoietic stem/progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes pB-ALL at low penetrance, which resembles the human disease. pB-ALL blast cells were BCR-ABL-negative and transcriptionally similar to pro-B/pre-B cells, suggesting disease onset upon reduced Pax5 functionality. Consistent with this, double Sca1-BCR-ABLp190+Pax5+/- mice developed pB-ALL with shorter latencies, 90% incidence, and accumulation of genomic alterations in the remaining wild-type Pax5 allele. Mechanistically, the Pax5-deficient leukemic pro-B cells exhibited a metabolic switch toward increased glucose utilization and energy metabolism. Transcriptome analysis revealed that metabolic genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were upregulated in Pax5-deficient leukemic cells, and a similar metabolic signature could be observed in human leukemia. Our studies unveil the first in vivo evidence that the combination between Sca1-BCR-ABLp190 and metabolic reprogramming imposed by reduced Pax5 expression is sufficient for pB-ALL development. These findings might help to prevent conversion of BCR-ABLp190 preleukemic cells.Significance: Loss of Pax5 drives metabolic reprogramming, which together with Sca1-restricted BCR-ABL expression enables leukemic transformation. Cancer Res; 78(10); 2669-79. ©2018 AACR.
Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Animais , Linfócitos B/metabolismo , Linhagem Celular , Metabolismo Energético/genética , Proteínas de Fusão bcr-abl/genética , Glucose/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fator de Transcrição PAX5/metabolismo , Pré-Leucemia/patologiaRESUMO
Constitutional mismatch repair deficiency (CMMRD) is an autosomal recessively inherited childhood cancer susceptibility syndrome caused by biallelic germline mutations in one of the mismatch repair (MMR) genes. The spectrum of CMMRD-associated tumours is very broad and many CMMRD patients additionally display signposting non-neoplastic features, most frequently café-au-lait macules and other pigmentation alterations. We report on a 13-month-old girl suspected of having CMMRD due to a desmoplastic medulloblastoma and a striking skin pigmentation that included multiple café-au-lait macules, hypopigmented areas and Mongolian spots. Whole-exome sequencing revealed homozygosity for MSH2 variant p.(Leu92Val) and MSH6 variant p.(Val809del), both variants of uncertain significance (VUS). Immunohistochemical analysis of the tumour tissue showed expression of all four MMR proteins and gMSI testing was negative. However, functional assays demonstrated that the cells of the patient displayed methylation tolerance and ex vivo microsatellite instability, which unequivocally confirmed the diagnosis of CMMRD. Taken together, the results render the MSH2 variant unlikely to be responsible for the phenotype, while they are compatible with MSH6-associated CMMRD. This case illustrates the diagnostic strategy of confirming CMMRD syndrome in patients with VUS.
Assuntos
Neoplasias Cerebelares/genética , Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Meduloblastoma/genética , Proteína 2 Homóloga a MutS/genética , Fenótipo , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/metabolismo , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Lactente , Meduloblastoma/patologia , Proteína 2 Homóloga a MutS/metabolismoRESUMO
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination in mature B-cells, while AID was also shown to play a role in developing pre-BCR/BCR-positive B-cells of the bone marrow. To further elucidate a potential function of Aid in the bone marrow prior to V(D)J-recombination, we utilized an in vivo model which exerts a B-cell developmental arrest at the pro-B cell stage with low frequencies of pro-B cell acute lymphoblastic leukemia (pro-B ALL) development. Therefore, p19Arf-/-Rag1-/- (AR) mice were crossed with Aid-deficient mice (ARA). Surprisingly, loss of Aid expression in pro-B cells accelerated pro-B ALL incidence from 30% (AR) to 98% (ARA). This effect was Aid dose dependent, since Aid+/- animals of the same background displayed a significantly lower incidence (83%). Furthermore, B-cell-specific Aid up-regulation was observed in Aid-competent pro-B ALLs. Additional whole exome/sanger sequencing of murine pro-B ALLs revealed an accumulation of recurrent somatic Jak3 (p.R653H, p.V670A) and Dnm2 (p.G397R) mutations, which highlights the importance of active IL7R signaling in the pro-B ALL blast cells. These findings were further supported by an enhanced proliferative potential of ARA pro-B cells compared to Aid-competent cells from the same genetic background. In summary, we show that both Aid and Rag1 act as a negative regulators in pro-B cells, preventing pro-B ALL.
RESUMO
ETV6-RUNX1 is associated with the most common subtype of childhood leukemia. As few ETV6-RUNX1 carriers develop precursor B-cell acute lymphocytic leukemia (pB-ALL), the underlying genetic basis for development of full-blown leukemia remains to be identified, but the appearance of leukemia cases in time-space clusters keeps infection as a potential causal factor. Here, we present in vivo genetic evidence mechanistically connecting preleukemic ETV6-RUNX1 expression in hematopoetic stem cells/precursor cells (HSC/PC) and postnatal infections for human-like pB-ALL. In our model, ETV6-RUNX1 conferred a low risk of developing pB-ALL after exposure to common pathogens, corroborating the low incidence observed in humans. Murine preleukemic ETV6-RUNX1 pro/preB cells showed high Rag1/2 expression, known for human ETV6-RUNX1 pB-ALL. Murine and human ETV6-RUNX1 pB-ALL revealed recurrent genomic alterations, with a relevant proportion affecting genes of the lysine demethylase (KDM) family. KDM5C loss of function resulted in increased levels of H3K4me3, which coprecipitated with RAG2 in a human cell line model, laying the molecular basis for recombination activity. We conclude that alterations of KDM family members represent a disease-driving mechanism and an explanation for RAG off-target cleavage observed in humans. Our results explain the genetic basis for clonal evolution of an ETV6-RUNX1 preleukemic clone to pB-ALL after infection exposure and offer the possibility of novel therapeutic approaches. Cancer Res; 77(16); 4365-77. ©2017 AACR.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/microbiologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genéticaRESUMO
Autoimmune lymphoproliferative syndrome (ALPS) is typically caused by mutations in genes of the extrinsic FAS mediated apoptotic pathway, but for about 30% of ALPS-like patients the genetic diagnosis is lacking. We analyzed 30 children with ALPS-like disease of unknown cause and identified two dominant gain-of-function mutations of the Signal Transducer And Activator Of Transcription 3 (STAT3, p.R278H, p.M394T) leading to increased transcriptional activity. Hyperactivity of STAT3, a known repressor of FAS, was associated with decreased FAS-mediated apoptosis, mimicking ALPS caused by FAS mutations. Expression of BCL2 family proteins, further targets of STAT3 and regulators of the intrinsic apoptotic pathway, was disturbed. Cells with hyperactive STAT3 were consequently more resistant to intrinsic apoptotic stimuli and STAT3 inhibition alleviated this effect. Importantly, STAT3-mutant cells were more sensitive to death induced by the BCL2-inhibitor ABT-737 indicating a dependence on anti-apoptotic BCL2 proteins and potential novel therapeutic options.
Assuntos
Apoptose/genética , Síndrome Linfoproliferativa Autoimune/genética , Fator de Transcrição STAT3/genética , Compostos de Bifenilo , Hidroxitolueno Butilado/análogos & derivados , Estudos de Casos e Controles , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Família , Proteína Ligante Fas/metabolismo , Feminino , Perfilação da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Immunoblotting , Imunofenotipagem , Leucócitos Mononucleares , Linfócitos , Nitrofenóis , Piperazinas , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Sulfonamidas , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Receptor fas/metabolismoRESUMO
Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.
Assuntos
Síndrome de Down/complicações , Janus Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fatores de Transcrição STAT/metabolismo , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Recidiva , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Adulto JovemAssuntos
Reparo do DNA , Mononucleose Infecciosa/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Imunodeficiência Combinada Severa/genética , Adolescente , Ciclo Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/patologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 4/fisiologia , Humanos , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/patologia , Masculino , Mitomicina/farmacologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/imunologia , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologiaAssuntos
Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Mutação com Perda de Função/genética , Subunidade p50 de NF-kappa B/genética , Adulto , Feminino , Humanos , Síndromes de Imunodeficiência/imunologia , Mediadores da Inflamação/imunologia , Mutação com Perda de Função/imunologia , Subunidade p50 de NF-kappa B/imunologia , Linhagem , Adulto JovemRESUMO
Hereditary defects in several genes have been shown to disturb the normal immune response to EBV and to give rise to severe EBV-induced lymphoproliferation in the recent years. Nevertheless, in many patients, the molecular basis of fatal EBV infection still remains unclear. The Fanconi anemia-associated protein 24 (FAAP24) plays a dual role in DNA repair. By association with FANCM as component of the FA core complex, it recruits the FA core complex to damaged DNA. Additionally, FAAP24 has been shown to evoke ATR-mediated checkpoint responses independently of the FA core complex. By whole exome sequencing, we identified a homozygous missense mutation in the FAAP24 gene (cC635T, pT212M) in two siblings of a consanguineous Turkish family who died from an EBV-associated lymphoproliferative disease after infection with a variant EBV strain, expressing a previously unknown EBNA2 allele.In order to analyze the functionality of the variant FAAP24 allele, we used herpes virus saimiri-transformed patient T cells to test endogenous cellular FAAP24 functions that are known to be important in DNA damage control. We saw an impaired FANCD2 monoubiquitination as well as delayed checkpoint responses, especially affecting CHK1 phosphorylation in patient samples in comparison to healthy controls. The phenotype of this FAAP24 mutation might have been further accelerated by an EBV strain that harbors an EBNA2 allele with enhanced activities compared to the prototype laboratory strain B95.8. This is the first report of an FAAP24 loss of function mutation found in human patients with EBV-associated lymphoproliferation.
Assuntos
Proteínas de Ligação a DNA/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Mutação , Irmãos , Substituição de Aminoácidos , Ciclo Celular , Códon , Consanguinidade , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Evolução Fatal , Feminino , Genótipo , Homozigoto , Humanos , Contagem de Linfócitos , Transtornos Linfoproliferativos/virologia , Masculino , Linhagem , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Troca de Cromátide Irmã , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ubiquitinação , Sequenciamento do ExomaRESUMO
Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B-cell lymphomas, although a subset of patients with refractory or relapsed B-cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B-cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B-cell lymphoma cell lines and determined SAHA-interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock-out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA-CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock-out in resistant cells increased SAHA sensitivity. In silico analysis of B-cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA-interacting proteins highlights FGR as a factor involved in SAHA resistance in B-cell lymphoma.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Espectrometria de Massas , Mutação/genética , Reprodutibilidade dos Testes , VorinostatAssuntos
Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Homozigoto , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/virologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Criança , Consanguinidade , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/patogenicidade , Humanos , Transtornos Linfoproliferativos/diagnóstico , Polimorfismo de Nucleotídeo Único , TurquiaRESUMO
UNLABELLED: Earlier in the past century, infections were regarded as the most likely cause of childhood B-cell precursor acute lymphoblastic leukemia (pB-ALL). However, there is a lack of relevant biologic evidence supporting this hypothesis. We present in vivo genetic evidence mechanistically connecting inherited susceptibility to pB-ALL and postnatal infections by showing that pB-ALL was initiated in Pax5 heterozygous mice only when they were exposed to common pathogens. Strikingly, these murine pB-ALLs closely resemble the human disease. Tumor exome sequencing revealed activating somatic, nonsynonymous mutations of Jak3 as a second hit. Transplantation experiments and deep sequencing suggest that inactivating mutations in Pax5 promote leukemogenesis by creating an aberrant progenitor compartment that is susceptible to malignant transformation through accumulation of secondary Jak3 mutations. Thus, treatment of Pax5(+/-) leukemic cells with specific JAK1/3 inhibitors resulted in increased apoptosis. These results uncover the causal role of infection in pB-ALL development. SIGNIFICANCE: These results demonstrate that delayed infection exposure is a causal factor in pB-ALL. Therefore, these findings have critical implications for the understanding of the pathogenesis of leukemia and for the development of novel therapies for this disease.
Assuntos
Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiologia , Animais , Transplante de Medula Óssea , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Exoma , Feminino , Perfilação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Interleucina-7/metabolismo , Interleucina-7/farmacologia , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Masculino , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/genética , Integração ViralRESUMO
CYP4B1 belongs to the cytochrome P450 family 4, one of the oldest P450 families whose members have been highly conserved throughout evolution. The CYP4 monooxygenases typically oxidize fatty acids to both inactive and active lipid mediators, although the endogenous ligand(s) is largely unknown. During evolution, at the transition of great apes to humanoids, the CYP4B1 protein acquired a serine instead of a proline at the canonical position 427 in the meander region. Although this alteration impairs P450 function related to the processing of naturally occurring lung toxins, a study in transgenic mice suggested that an additional serine insertion at position 207 in human CYP4B1 can rescue the enzyme stability and activity. Here, we report that the genomic insertion of a CAG triplet at the intron 5-exon 6 boundary in human CYP4B1 introduced an additional splice acceptor site in frame. During evolution, this change occurred presumably at the stage of Hominoidae and leads to two major isoforms of the CYP4B1 enzymes of humans and great apes, either with or without a serine 207 insertion (insSer207). We further demonstrated that the CYP4B1 enzyme with insSer207 is the dominant isoform (76%) in humans. Importantly, this amino acid insertion did not affect the 4-ipomeanol metabolizing activities or stabilities of the native rabbit or human CYP4B1 enzymes, when introduced as transgenes in human primary cells and cell lines. In our 3D modeling, this functional neutrality of insSer207 is compatible with its predicted location on the exterior surface of CYP4B1 in a flexible side chain. Therefore, the Ser207 insertion does not rescue the P450 functional activity of human CYP4B1 that has been lost during evolution.
Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Evolução Biológica , Sítios de Splice de RNA/genética , Adulto , Processamento Alternativo/genética , Animais , Hidrocarboneto de Aril Hidroxilases/química , Morte Celular/efeitos dos fármacos , Estabilidade Enzimática , Células HEK293 , Células Hep G2 , Humanos , Modelos Moleculares , Mutagênese Insercional/genética , Coelhos , Serina/genética , Terpenos/farmacologiaRESUMO
20% of children suffering from high hyperdiploid acute lymphoblastic leukemia develop recurrent disease. The molecular mechanisms are largely unknown. Here, we analyzed the genetic landscape of five patients at relapse, who developed recurrent disease without prior high-risk indication using whole-exome- and whole-genome-sequencing. Oncogenic mutations of RAS pathway genes (NRAS, KRAS, FLT3, n=4) and deactivating mutations of major epigenetic regulators (CREBBP, EP300, each n=2 and ARID4B, EZH2, MACROD2, MLL2, each n=1) were prominent in these cases and virtually absent in non-recurrent cases (n=6) or other pediatric acute lymphoblastic leukemia cases (n=18). In relapse nucleotide variations were detected in cell fate determining transcription factors (GLIS1, AKNA). Structural genomic alterations affected genes regulating B-cell development (IKZF1, PBX1, RUNX1). Eleven novel translocations involved the genes ART4, C12orf60, MACROD2, TBL1XR1, LRRN4, KIAA1467, and ELMO1/MIR1200. Typically, patients harbored only single structural variations, except for one patient who displayed massive rearrangements in the context of a germline tumor suppressor TP53 mutation and a Li-Fraumeni syndrome-like family history. Another patient harbored a germline mutation in the DNA repair factor ATM. In summary, the relapse patients of our cohort were characterized by somatic mutations affecting the RAS pathway, epigenetic and developmental programs and germline mutations in DNA repair pathways.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Antineoplásicos/uso terapêutico , Sequência de Bases , Pré-Escolar , Reparo do DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariótipo , Masculino , Dados de Sequência Molecular , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , Fatores de Risco , Transdução de SinaisRESUMO
TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.