Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796704

RESUMO

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucolipidoses , Neuraminidase , Animais , Dependovirus/genética , Terapia Genética/métodos , Mucolipidoses/terapia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Transdução Genética , Expressão Gênica
2.
J Biol Chem ; 298(10): 102425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030822

RESUMO

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Assuntos
Actinas , Proteínas de Ligação ao Cálcio , Exossomos , Sinteninas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Proteômica , Sinteninas/metabolismo , Humanos , Animais , Camundongos , Multimerização Proteica
3.
Sci Adv ; 5(7): eaav3270, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328155

RESUMO

Lysosomal exocytosis is a ubiquitous process negatively regulated by neuraminidase 1 (NEU1), a sialidase mutated in the glycoprotein storage disease sialidosis. In Neu1-/- mice, excessive lysosomal exocytosis is at the basis of disease pathogenesis. Yet, the tissue-specific molecular consequences of this deregulated pathway are still unfolding. We now report that in muscle connective tissue, Neu1-/- fibroblasts have features of myofibroblasts and are proliferative, migratory, and exocytose large amounts of exosomes. These nanocarriers loaded with activated transforming growth factor-ß and wingless-related integration site (WNT)/ß-catenin signaling molecules propagate fibrotic signals to other cells, maintaining the tissue in a prolonged transitional status. Myofibroblast-derived exosomes fed to normal fibroblasts convert them into myofibroblasts, changing the recipient cells' proliferative and migratory properties. These findings reveal an unexpected exosome-mediated signaling pathway downstream of NEU1 deficiency that propagates a fibrotic disease and could be implicated in idiopathic forms of fibrosis in humans.


Assuntos
Suscetibilidade a Doenças , Exossomos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Dependovirus/genética , Modelos Animais de Doenças , Exocitose , Fibroblastos/metabolismo , Fibrose/patologia , Fibrose/terapia , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Imuno-Histoquímica , Camundongos , Mucolipidoses , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
Nat Commun ; 7: 11876, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27336173

RESUMO

Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.


Assuntos
Actomiosina/metabolismo , Barreira Hematoencefálica , Proteínas de Ligação ao Cálcio/fisiologia , Plexo Corióideo/metabolismo , Junções Íntimas/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular , Plexo Corióideo/ultraestrutura , Epêndima/ultraestrutura , Células Epiteliais/ultraestrutura , Hidrocefalia/etiologia , Camundongos , Camundongos Knockout , Proteína da Zônula de Oclusão-1/metabolismo
5.
Sci Adv ; 1(11): e1500603, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26824057

RESUMO

Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf (-/-) mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance.

6.
Nat Commun ; 4: 2734, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225533

RESUMO

Alzheimer's disease (AD) belongs to a category of adult neurodegenerative conditions, which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available, and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function--accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of Aß peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces ß-amyloid plaques. Our findings identify an additional pathway for the secretion of Aß and define NEU1 as a potential therapeutic molecule for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Exocitose/fisiologia , Lisossomos/metabolismo , Mucolipidoses/genética , Neuraminidase/genética , Animais , Encéfalo/embriologia , Calcimicina/metabolismo , Linhagem Celular , Dependovirus/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Camundongos , Camundongos Transgênicos , Neuraminidase/fisiologia , Neurônios/metabolismo , Fatores de Risco
7.
Biochim Biophys Acta ; 1832(10): 1784-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770387

RESUMO

The lysosomal storage disease sialidosis is caused by a primary deficiency of the sialidase N-acetyl-α-neuraminidase-1 (NEU1). Patients with type I sialidosis develop an attenuated, non-neuropathic form of the disease also named cherry red spot myoclonus syndrome, with symptoms arising during juvenile/ adult age. NEU1 requires binding to its chaperone, protective protein/cathepsin A (PPCA), for lysosomal compartmentalization, stability and catalytic activation. We have generated a new mouse model of type I sialidosis that ubiquitously expresses a NEU1 variant carrying a V54M amino acid substitution identified in an adult patient with type I sialidosis. Mutant mice developed signs of lysosomal disease after 1year of age, predominantly in the kidney, albeit low residual NEU1 activity was detected in most organs and cell types. We demonstrate that the activity of the mutant enzyme could be effectively increased in all systemic tissues by chaperone-mediated gene therapy with a liver-tropic recombinant AAV2/8 vector expressing PPCA. This resulted in clear amelioration of the disease phenotype. These results suggest that at least some of the NEU1 mutations associated with type I sialidosis may respond to PPCA-chaperone-mediated gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética , Chaperonas Moleculares/metabolismo , Mucolipidoses/terapia , Recombinação Genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout
8.
Mol Ther ; 20(2): 267-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22008912

RESUMO

Galactosialidosis (GS) is a lysosomal storage disease linked to deficiency of the protective protein/cathepsin A (PPCA). Similarly to GS patients, Ppca-null mice develop a systemic disease of the reticuloendothelial system, affecting most visceral organs and the nervous system. Symptoms include severe nephropathy, visceromegaly, infertility, progressive ataxia, and shortened life span. Here, we have conducted a preclinical, dose-finding study on a large cohort of GS mice injected intravenously at 1 month of age with increasing doses of a GMP-grade rAAV2/8 vector, expressing PPCA under the control of a liver-specific promoter. Treated mice, monitored for 16 weeks post-treatment, had normal physical appearance and behavior without discernable side effects. Despite the restricted expression of the transgene in the liver, immunohistochemical and biochemical analyses of other systemic organs, serum, and urine showed a dose-dependent, widespread correction of the disease phenotype, suggestive of a protein-mediated mechanism of cross-correction. A notable finding was that rAAV-treated GS mice showed high expression of PPCA in the reproductive organs, which resulted in reversal of their infertility. Together these results support the use of this rAAV-PPCA vector as a viable and safe method of gene delivery for the treatment of systemic disease in non-neuropathic GS patients.


Assuntos
Dependovirus/fisiologia , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Fígado/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Tropismo Viral , Animais , Catepsina A/genética , Catepsina A/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Ativação Enzimática/genética , Feminino , Fertilidade/genética , Expressão Gênica , Vetores Genéticos/farmacocinética , Humanos , Rim/metabolismo , Rim/patologia , Fígado/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neuraminidase/metabolismo , Oligossacarídeos/urina , Tamanho do Órgão , Baço/metabolismo , Baço/patologia
9.
Mol Cell ; 36(3): 500-11, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19917257

RESUMO

Mitochondria-associated ER membranes, or MAMs, define the sites of endoplasmic reticulum/mitochondria juxtaposition that control Ca(2+) flux between these organelles. We found that in a mouse model of the human lysosomal storage disease GM1-gangliosidosis, GM1-ganglioside accumulates in the glycosphingolipid-enriched microdomain (GEM) fractions of MAMs, where it interacts with the phosphorylated form of IP3 receptor-1, influencing the activity of this channel. Ca(2+) depleted from the ER is then taken up by the mitochondria, leading to Ca(2+) overload in this organelle. The latter induces mitochondrial membrane permeabilization (MMP), opening of the permeability transition pore, and activation of the mitochondrial apoptotic pathway. This study identifies the GEMs as the sites of Ca(2+) diffusion between the ER and the mitochondria. We propose a new mechanism of Ca(2+)-mediated apoptotic signaling whereby GM1 accumulation at the GEMs alters Ca(2+) dynamics and acts as a molecular effector of both ER stress-induced and mitochondria-mediated apoptosis of neuronal cells.


Assuntos
Apoptose , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Gangliosídeo G(M1)/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/farmacologia , Células Cultivadas , Citocromos c/metabolismo , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gangliosídeo G(M1)/farmacologia , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Glicoesfingolipídeos/metabolismo , Humanos , Immunoblotting , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microdomínios da Membrana/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA