Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 51(11): 1-13, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31776328

RESUMO

For chronic kidney disease, regeneration of lost nephrons with human kidney organoids derived from induced pluripotent stem (iPS) cells is proposed to be an attractive potential therapeutic option. It remains unclear, however, whether organoids transplanted into kidneys in vivo would be safe or functional. Here, we purified kidney organoids and transplanted them beneath the kidney capsules of immunodeficient mice to test their safety and maturity. Kidney organoid grafts survived for months after transplantation and became vascularized from host mouse endothelial cells. Nephron-like structures in grafts appeared more mature than kidney organoids in vitro, but remained immature compared with the neighboring mouse kidney tissue. Ultrastructural analysis revealed filtration barrier-like structures, capillary lumens, and tubules with brush border in the transplanted kidney organoids, which were more mature than those of the kidney organoids in vitro but not as organized as adult mammalian kidneys. Immaturity was a common feature of three separate differentiation protocols by immunofluorescence analysis and single cell RNA sequencing. Stroma of transplanted kidney organoid grafts were filled with vimentin-positive mesenchymal cells, and chondrogenesis, cystogenesis, and stromal expansion were observed in the long term. Transcription profiles showed that long-term maintenance after kidney organoid transplantation induced transcriptomic reprogramming with prominent suppression of cell-cycle-related genes and upregulation of extracellular matrix organization. Our data suggest that kidney organoids derived from iPS cells may be transplantable but strategies to improve nephron differentiation and purity are required before they can be applied in humans as a therapeutic option.


Assuntos
Diferenciação Celular/fisiologia , Rim/citologia , Organoides/citologia , Animais , Aquaporina 1/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Rim/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Microscopia Eletrônica , Organoides/metabolismo , Organoides/transplante , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
JCI Insight ; 1(20): e87446, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27942582

RESUMO

Pentraxin-2 (PTX-2), also known as serum amyloid P component (SAP/APCS), is a constitutive, antiinflammatory, innate immune plasma protein whose circulating level is decreased in chronic human fibrotic diseases. Here we show that recombinant human PTX-2 (rhPTX-2) retards progression of chronic kidney disease in Col4a3 mutant mice with Alport syndrome, reducing blood markers of kidney failure, enhancing lifespan by 20%, and improving histological signs of disease. Exogenously delivered rhPTX-2 was detected in macrophages but also in tubular epithelial cells, where it counteracted macrophage activation and was cytoprotective for the epithelium. Computational analysis of genes regulated by rhPTX-2 identified the transcriptional regulator c-Jun along with its activator protein-1 (AP-1) binding partners as a central target for the function of rhPTX-2. Accordingly, PTX-2 attenuates c-Jun and AP-1 activity, and reduces expression of AP-1-dependent inflammatory genes in both monocytes and epithelium. Our studies therefore identify rhPTX-2 as a potential therapy for chronic fibrotic disease of the kidney and an important inhibitor of pathological c-Jun signaling in this setting.


Assuntos
Proteína C-Reativa/farmacologia , Rim/patologia , Nefrite Hereditária/terapia , Proteínas do Tecido Nervoso/farmacologia , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Transdução de Sinais , Fator de Transcrição AP-1/antagonistas & inibidores , Animais , Células Cultivadas , Fibrose , Humanos , Ativação de Macrófagos , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Monócitos , Nefrite Hereditária/patologia , Proteínas Recombinantes/farmacologia
3.
J Am Soc Nephrol ; 27(12): 3639-3652, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27026366

RESUMO

The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.


Assuntos
Nefropatias/etiologia , Rim/patologia , Miofibroblastos/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais , Fatores de Necrose Tumoral/fisiologia , Animais , Citocina TWEAK , Progressão da Doença , Fibrose/etiologia , Camundongos , Receptor de TWEAK
4.
Am J Physiol Renal Physiol ; 310(10): F931-44, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26911854

RESUMO

MicroRNAs (miRs), a class of small noncoding RNAs that act as post-transcriptional regulators of gene expression, have attracted increasing attention as critical regulators of organogenesis, cancer, and disease. Interest has been spurred by development of a novel class of synthetic RNA oligonucleotides with excellent drug-like properties that hybridize to a specific miR, preventing its action. In kidney disease, a small number of miRs are dysregulated. These overlap with regulated miRs in nephrogenesis and kidney cancers. Several dysregulated miRs have been identified in fibrotic diseases of other organs, representing a "fibrotic signature," and some of these fibrotic miRs contribute remarkably to the pathogenesis of kidney disease. Chronic kidney disease, affecting ∼10% of the population, leads to kidney failure, with few treatment options. Here, we will explore the pathological mechanism of miR-21, whose pre-eminent role in amplifying kidney disease and fibrosis by suppressing mitochondrial biogenesis and function is established. Evolving roles for miR-214, -199, -200, -155, -29, -223, and -126 in kidney disease will be discussed, and we will demonstrate how studying functions of distinct miRs has led to new mechanistic insights for kidney disease progression. Finally, the utility of anti-miR oligonucleotides as potential novel therapeutics to treat chronic disease will be highlighted.


Assuntos
MicroRNAs/metabolismo , Terapia de Alvo Molecular , Oligonucleotídeos/uso terapêutico , Biogênese de Organelas , Insuficiência Renal/metabolismo , Animais , Ácidos Graxos/metabolismo , Fibrose , Humanos , Rim/patologia , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/farmacologia , Oxirredução , Insuficiência Renal/tratamento farmacológico , Insuficiência Renal/etiologia
5.
J Am Soc Nephrol ; 26(5): 1040-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25406339

RESUMO

FSGS is a heterogeneous fibrosing disease of the kidney, the cause of which remains poorly understood. In most cases, there is no effective treatment to halt or retard progression to renal failure. Increasing evidence points to mitochondrial dysfunction and the generation of reactive oxygen species in the pathogenesis of CKD. Autophagy, a major intracellular lysosomal degradation system, performs homeostatic functions linked to metabolism and organelle turnover. We prevented normal autophagic pathways in nephrons of mice by mutating critical autophagy genes ATG5 or ATG7 during nephrogenesis. Mutant mice developed mild podocyte and tubular dysfunction within 2 months, profound glomerular and tubular changes bearing close similarity to human disease by 4 months, and organ failure by 6 months. Ultrastructurally, podocytes and tubular cells showed vacuolization, abnormal mitochondria, and evidence of endoplasmic reticulum stress, features that precede the appearance of histologic or clinical disease. Similar changes were observed in human idiopathic FSGS kidney biopsy specimens. Biochemical analysis of podocytes and tubules of 2-month-old mutant mice revealed elevated production of reactive oxygen species, activation of endoplasmic reticulum stress pathways, phosphorylation of p38, and mitochondrial dysfunction. Furthermore, cultured proximal tubule cells isolated from mutant mice showed marked mitochondrial dysfunction and elevated mitochondrial reactive oxygen species generation that was suppressed by a mitochondrial superoxide scavenger. We conclude that mitochondrial dysfunction and endoplasmic reticulum stress due to impaired autophagic organelle turnover in podocytes and tubular epithelium are sufficient to cause many of the manifestations of FSGS in mice.


Assuntos
Glomerulosclerose Segmentar e Focal/etiologia , Proteínas Associadas aos Microtúbulos/deficiência , Mitocôndrias/fisiologia , Podócitos/fisiologia , Animais , Autofagia , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/ultraestrutura , Mutação , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Urotélio/metabolismo
6.
J Formos Med Assoc ; 112(5): 237-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23660218

RESUMO

One cornerstone of chronic kidney disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. This review will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD.


Assuntos
Nefropatias/terapia , MicroRNAs/antagonistas & inibidores , Animais , Células Epiteliais/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Nefropatias/genética , MicroRNAs/fisiologia
7.
Mol Cell Proteomics ; 8(5): 1044-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19116209

RESUMO

Activated macrophages are essential effectors of immunity and a rich source of matrix metalloproteinase-9 (MMP-9; gelatinase B). To search for cellular substrates of the enzyme, we subjected wild-type macrophages and macrophages expressing an autoactivating form of pro-MMP-9 (M9A macrophages) to proteomics analysis. Two-dimensional liquid chromatography together with tandem mass spectrometry identified 467 proteins in medium conditioned by M9A and/or wild-type macrophages. Subtractive proteomics identified 18 candidate MMP-9 substrates. Biochemical studies confirmed that two transmembrane proteins, beta(2) integrin subunit (CD18) and amyloid protein precursor (APP), were enriched in the medium of M9A macrophages. To identify potential cleavage sites, we synthesized an overlapping library of peptides that spanned 60 residues of the ectodomain and transmembrane domain of beta(2) integrin. Active MMP-9 cleaved a single peptide, ECVKGPNVAAIVGGT, at residues corresponding to Ala(705) and Ile(706) of the beta(2) integrin. Peptides corresponding to this cleavage site were detected by tandem mass spectrometric analysis only in medium from M9A macrophages, strongly supporting the proposal that beta(2) integrin is shed by autoactivating MMP-9. Our observations indicate that subtractive proteomics in concert with peptide substrate mapping is a powerful approach for identifying proteolytic substrates and suggest that MMP-9 plays previously unsuspected roles in the regulation and shedding of beta(2) integrin.


Assuntos
Antígenos CD18/metabolismo , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos CD18/química , Extratos Celulares , Linhagem Celular , Cromatografia Líquida , Meios de Cultivo Condicionados , Ativação Enzimática , Macrófagos/metabolismo , Espectrometria de Massas , Proteínas de Membrana/análise , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteômica , Reprodutibilidade dos Testes , Especificidade por Substrato
8.
J Clin Invest ; 116(1): 59-69, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16374516

RESUMO

The majority of acute clinical manifestations of atherosclerosis are due to the physical rupture of advanced atherosclerotic plaques. It has been hypothesized that macrophages play a key role in inducing plaque rupture by secreting proteases that destroy the extracellular matrix that provides physical strength to the fibrous cap. Despite reports detailing the expression of multiple proteases by macrophages in rupture-prone regions, there is no direct proof that macrophage-mediated matrix degradation can induce plaque rupture. We aimed to test this hypothesis by retrovirally overexpressing the candidate enzyme MMP-9 in macrophages of advanced atherosclerotic lesions of apoE-/- mice. Despite a greater than 10-fold increase in the expression of MMP-9 by macrophages, there was only a minor increase in the incidence of plaque fissuring. Subsequent analysis revealed that macrophages secrete MMP-9 predominantly as a proform, and this form is unable to degrade the matrix component elastin. Expression of an autoactivating form of MMP-9 in macrophages in vitro greatly enhances elastin degradation and induces significant plaque disruption when overexpressed by macrophages in advanced atherosclerotic lesions of apoE-/- mice in vivo. These data show that enhanced macrophage proteolytic activity can induce acute plaque disruption and highlight MMP-9 as a potential therapeutic target for stabilizing rupture-prone plaques.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/genética , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/enzimologia , Aterosclerose/patologia , Transplante de Medula Óssea , Colagenases/metabolismo , Cruzamentos Genéticos , Feminino , Metaloproteinase 12 da Matriz , Metaloproteinase 13 da Matriz , Metaloproteinase 9 da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA