Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216658

RESUMO

Anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis has diverse patterns of injury including microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Necrotizing and crescentic glomerulonephritis (NCGN) occurs in all syndromes and as renal limited vasculitis (RLV). Single dose intravenous ANCA IgG-specific for mouse myeloperoxidase (MPO) causes RLV in mice. Although multiple mouse models have elucidated ANCA-IgG induced necrotizing and crescentic glomerulonephritis (NCGN), pathogenesis of ANCA-induced granulomatosis and vasculitis outside the kidney has not been clarified. To investigate this, we used intravenous MPO-ANCA IgG in the same strain of mice to induce different patterns of lung disease mirroring patients with granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Repeated intravenous MPO-ANCA IgG induced GPA with NCGN, lung capillaritis, arteritis and granulomatosis. Lung leukocyte phenotypes were evaluated by immunohistochemical image analysis and by flow cytometry. ANCA lung capillaritis and microabscesses began within one day and evolved into granulomas in under seven days. Influenza plus single dose MPO-ANCA IgG induced MPA with NCGN, lung capillaritis and arteritis, but no granulomatosis. Allergic airway disease caused by house dust mites or ovalbumin plus single dose intravenous MPO-ANCA IgG induced EGPA with eosinophilic bronchiolitis, NCGN, capillaritis, arteritis, and granulomatosis. Thus, our study shows that the occurrence and pattern of lung lesions are determined by the same ANCA IgG accompanied by different synergistic immune factors.

2.
PLoS One ; 14(2): e0212866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818335

RESUMO

Cigarette smoke is well recognized to cause injury to the airways and the alveolar walls over time. This injury usually requires many years of exposure, suggesting that the lungs may rapidly develop responses that initially protect it from this repetitive injury. Our studies tested the hypotheses that smoke induces an inflammatory response and changes in mRNA profiles that are dependent on sex and the health status of the lung, and that the response of the lungs to smoke differs after 1 day compared to 5 days of exposure. Male and female wildtype (WT) and Scnn1b-transgenic (ßENaC) mice, which have chronic bronchitis and emphysematous changes due to dehydrated mucus, were exposed to cigarette smoke or sham air conditions for 1 or 5 days. The inflammatory response and gene expression profiles were analyzed in lung tissue. Overall, the inflammatory response to cigarette smoke was mild, and changes in mediators were more numerous after 1 than 5 days. ßENaC mice had more airspace leukocytes than WT mice, and smoke exposure resulted in additional significant alterations. Many genes and gene sets responded similarly at 1 and 5 days: genes involved in oxidative stress responses were upregulated while immune response genes were downregulated. However, certain genes and biological processes were regulated differently after 1 compared to 5 days. Extracellular matrix biology genes and gene sets were upregulated after 1 day but downregulated by 5 days of smoke compared to sham exposure. There was no difference in the transcriptional response to smoke between WT and ßENaC mice or between male and female mice at either 1 or 5 days. Taken together, these studies suggest that the lungs rapidly alter gene expression after only one exposure to cigarette smoke, with few additional changes after four additional days of repeated exposure. These changes may contribute to preventing lung damage.


Assuntos
Bronquite Crônica/patologia , Enfisema/patologia , Pulmão/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Animais , Bronquite Crônica/diagnóstico , Bronquite Crônica/etiologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Enfisema/diagnóstico , Enfisema/etiologia , Canais Epiteliais de Sódio/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais , Fumar/efeitos adversos , Fatores de Tempo
3.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L425-L452, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522563

RESUMO

Accurate and reliable measurements of exposure to tobacco products are essential for identifying and confirming patterns of tobacco product use and for assessing their potential biological effects in both human populations and experimental systems. Due to the introduction of new tobacco-derived products and the development of novel ways to modify and use conventional tobacco products, precise and specific assessments of exposure to tobacco are now more important than ever. Biomarkers that were developed and validated to measure exposure to cigarettes are being evaluated to assess their use for measuring exposure to these new products. Here, we review current methods for measuring exposure to new and emerging tobacco products, such as electronic cigarettes, little cigars, water pipes, and cigarillos. Rigorously validated biomarkers specific to these new products have not yet been identified. Here, we discuss the strengths and limitations of current approaches, including whether they provide reliable exposure estimates for new and emerging products. We provide specific guidance for choosing practical and economical biomarkers for different study designs and experimental conditions. Our goal is to help both new and experienced investigators measure exposure to tobacco products accurately and avoid common experimental errors. With the identification of the capacity gaps in biomarker research on new and emerging tobacco products, we hope to provide researchers, policymakers, and funding agencies with a clear action plan for conducting and promoting research on the patterns of use and health effects of these products.


Assuntos
Biomarcadores/análise , Sistemas Eletrônicos de Liberação de Nicotina , Exposição Ambiental/análise , Nicotiana/efeitos adversos , Humanos , Metaboloma , Nicotina/análise , Nicotina/química
4.
Lab Invest ; 90(4): 599-610, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20142805

RESUMO

Neutrophil numbers must be tightly controlled to maintain host protection and prevent neutrophil-mediated tissue injury. CD18 deficiency leads to neutrophilia and myeloid hyperplasia in the bone marrow (BM). These studies examined the function of CD18 in regulating neutrophil production and determined whether the defects in neutrophil production that are observed in CD18 deficiency persist in the presence of wild-type (WT) leukocytes that confer host protection. Neutrophil production was evaluated in CD18(-/-) mice and lethally irradiated WT mice reconstituted with mixtures of CD18(-/-) and WT stem cells. Neutrophil kinetic studies suggest that CD18 may facilitate the release of the most mature neutrophils into the circulation. The proportion of CD18(-/-) neutrophils in chimeric animals was greater than the proportion of CD18(-/-) donor cells used to reconstitute the mice, and the percentage of CD18(-/-) leukocytes that were neutrophils was greater than for WT leukocytes, indicating that CD18 may regulate the lineage distribution of hematopoietic cells in the blood and BM. The proportion of Annexin V+ Gr-1+ cells in both the BM of chimeric animals and in vitro cultures of WT and CD18(-/-) hematopoietic stem cells was lower in CD18(-/-) than in WT cells, suggesting that CD18 modulates apoptosis. These data suggest that CD18 directly regulates neutrophil production, in part by limiting the survival of neutrophils and their precursors. Thus, the granulocytosis observed in CD18(-/-) mice and CD18-deficient patients is due to both defects in host defense and BM-intrinsic functions of CD18 in regulating neutrophil production.


Assuntos
Antígenos CD18/fisiologia , Mielopoese/fisiologia , Neutrófilos/fisiologia , Animais , Apoptose/fisiologia , Células Cultivadas , Quimera , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/fisiologia , Masculino , Camundongos , Camundongos Knockout
5.
Am J Pathol ; 173(2): 507-17, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18583316

RESUMO

Circulating neutrophils are persistently higher in mice deficient in the small GTPase Rac2 than in wild-type (WT) mice. Therefore, we examined the mechanisms through which the small GTPase Rac2 regulates neutrophil production and release. Lethally irradiated WT mice reconstituted with a 50:50 mixture of WT and Rac2(-/-) fetal liver cells were protected from neutrophilia, suggesting that neutrophilia is primarily because of extrinsic defects that can be corrected by WT leukocytes. However, the differential counts and numbers of leukocyte subtypes differed between Rac2(-/-) and WT cells, suggesting that Rac2 modulates leukocyte lineage distribution. Kinetic studies suggest Rac2 modulates the release of neutrophils into the circulation and does not prolong their circulating half life. The percentage of bone marrow cells that expressed the neutrophil marker Gr-1 in lethally irradiated WT or Rac2(-/-) recipients of Rac2(-/-) stem cells was greater than in recipients of WT stem cells; however, circulating neutrophil counts were higher only in Rac2(-/-) recipients of Rac2(-/-) stem cells. Rac2 mRNA was expressed in the bone marrow of WT recipients of Rac2(-/-) stem cells and in human mesenchymal stem cells. The data presented here suggest that Rac2 in hematopoietic cells regulates leukocyte lineage distribution and Rac2 in nonhematopoietic cells might contribute to regulating circulating neutrophil counts.


Assuntos
Células da Medula Óssea/citologia , Neutrófilos/citologia , Proteínas rac de Ligação ao GTP/fisiologia , Animais , Células da Medula Óssea/metabolismo , Linhagem da Célula , Fator Estimulador de Colônias de Granulócitos/sangue , Interleucina-17/metabolismo , Cinética , Contagem de Leucócitos , Fígado/citologia , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/metabolismo , Receptores de Quimiocinas/metabolismo , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA