Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurocrit Care ; 31(3): 550-558, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31313141

RESUMO

BACKGROUND: Spinal procedures such as lumbar punctures (LPs), epidurals, and spinal blocks are essential components to clinical practice but are challenging to teach, learn, or practice on real patients due to patient safety and comfort limiting the number of attempts. Resident physicians traditionally learn these spinal procedural skills through observation of a more senior physician before attempting the procedure. Simulation using models can improve providers' competency without introducing an added risk to patients. A difficulty encountered with access to simulation training for such procedures is the limited availability of simulators. While there are several high-quality, commercially available models that mimic the anatomy of lumbar spine, the cost of these models often limits the access to students and practitioners. The other challenge is access to simulators with versatility that can be used for palpation as well as ultrasound (US)-guided procedures. A simulator that can combine practice of both palpation and US-guided modalities would be efficacious in reducing cost to the teaching institutions. We attempted to overcome the access barrier to spinal models by developing an alternative that provides a good simulator for both palpation and US-guided LP while keeping the cost low. Our model can be easily manufactured by not only clinicians but also medical students. METHODS: A literature review was conducted to assess the available research and information on the production and use of simulators for practicing LPs and other spinal procedures. Publications queried described the production of models and utilizing the information compiled we devised and fabricated a model. RESULTS: A lumbar spine model was developed using computed tomography spine data of an average-sized male patient without lumbar spine pathology. The model was created using medical imaging processing software and printed on 3D printer using nylon plastic. This model was then utilized by residents, advanced practice providers, and medical students for palpation and US-guided LP simulation training. CONCLUSIONS: An inexpensive reusable non-commercial LP simulator can be an effective method for teaching invasive procedures like LPs, especially if it can be used both for palpation and US-guided procedures. The method outlined here can be easily reproduced in a relatively short amount of time. We recognize one limitation in the widespread dissemination of this technique being access to a 3D printer and digital designs for printing. Future studies will be necessary to determine the efficacy of the homemade LP simulator in teaching neurointensivist in training.


Assuntos
Vértebras Lombares , Impressão Tridimensional , Treinamento por Simulação , Punção Espinal , Ultrassonografia , Géis , Humanos , Processamento de Imagem Assistida por Computador , Modelos Anatômicos , Palpação , Cirurgia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA