Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Blood ; 143(13): 1242-1258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096363

RESUMO

ABSTRACT: To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Pirimidinas , Tiofenos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/uso terapêutico
2.
Front Oncol ; 13: 1196005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534243

RESUMO

Secondary plasma cell leukemia (sPCL) is a rare form of aggressive plasma cell malignancy arising mostly at end-stage refractory multiple myeloma and consequently presenting limited therapeutic options. We analyzed 13 sPCL for their sensitivity to BH3 mimetics targeting either BCL2 (venetoclax) or BCLXL (A1155463) and showed that 3 sPCL were efficiently killed by venetoclax and 3 sPCL by A1155463. Accordingly, BH3 profiling of 2 sPCL sensitive to BCLXL inhibition confirmed their high BCLXL primed profile. While targeting BCLXL using BH3 mimetics induces platelets on-target drug toxicity, the recent development of DT2216, a clinical-stage BCLXL proteolysis targeting chimera PROTAC compound, provides an alternative strategy to target BCLXL. Indeed, DT2216 specifically degrades BCLXL via VHL E3 ligase, without inducing thrombocytopenia. We demonstrated in human myeloma cell lines and sPCL that sensitivity to DT2216 strongly correlated with the sensitivity to A1155463. Interestingly, we showed that low doses of DT2216 (nM range) were sufficient to specifically degrade BCLXL after 48 hours of treatment, consistent with VHL expression, in all cell lines but irrespectively to DT2216 sensitivity. In myeloma cells, DT2216 induced apoptotic cell death and triggered BAX and BAK activation. In conclusion, our study demonstrated that patients with sPCL addicted to BCLXL, a small but a very challenging group, could potentially receive therapeutic benefit from DT2216. Clinical trials of DT2216 in this subset of sPCL patients are warranted.

3.
Cell Death Dis ; 11(5): 316, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371863

RESUMO

Multiple myeloma is a plasma cell malignancy that escapes from apoptosis by heterogeneously over-expressing anti-apoptotic BCL2 proteins. Myeloma cells with a t(11;14) translocation present a particular vulnerability to BCL2 inhibition while a majority of myeloma cells relies on MCL1 for survival. The present study aimed to determine whether the combination of BCL2 and MCL1 inhibitors at low doses could be of benefit for myeloma cells beyond the single selective inhibition of BCL2 or MCL1. We identified that half of patients were not efficiently targeted neither by BCL2 inhibitor nor MCL1 inhibitor. Seventy percent of these myeloma samples, either from patients at diagnosis or relapse, presented a marked increase of apoptosis upon low dose combination of both inhibitors. Interestingly, primary cells from a patient in progression under venetoclax treatment were not sensitive ex vivo to neither venetoclax nor to MCL1 inhibitor, whereas the combination of both efficiently induced cell death. This finding suggests that the combination could overcome venetoclax resistance. The efficacy of the combination was also confirmed in U266 xenograft model resistant to BCL2 and MCL1 inhibitors. Mechanistically, we demonstrated that the combination of both inhibitors favors apoptosis in a BAX/BAK dependent manner. We showed that activated BAX was readily increased upon the inhibitor combination leading to the formation of BAK/BAX hetero-complexes. We found that BCLXL remains a major resistant factor of cell death induced by this combination. The present study supports a rational for the clinical use of venetoclax/S63845 combination in myeloma patients with the potential to elicit significant clinical activity when both single inhibitors would not be effective but also to overcome developed in vivo venetoclax resistance.


Assuntos
Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pirimidinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Cells ; 9(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183335

RESUMO

Apoptosis is a highly conserved mechanism enabling the removal of unwanted cells. Mitochondrial apoptosis is governed by the B-cell lymphoma (BCL-2) family, including anti-apoptotic and pro-apoptotic proteins. Apoptosis evasion by dysregulation of anti-apoptotic BCL-2 members (BCL-2, MCL-1, BCL-XL) is a common hallmark in cancers. To divert this dysregulation into vulnerability, researchers have developed BH3 mimetics, which are small molecules that restore effective apoptosis in neoplastic cells by interfering with anti-apoptotic proteins. Among them, venetoclax is a potent and selective BCL-2 inhibitor, which has demonstrated the strongest clinical activity in mature B-cell malignancies, including chronic lymphoid leukemia, mantle-cell lymphoma, and multiple myeloma. Nevertheless, mechanisms of primary and acquired resistance have been recently described and several features such as cytogenetic abnormalities, BCL-2 family expression, and ex vivo drug testing have to be considered for predicting sensitivity to BH3 mimetics and helping in the identification of patients able to respond. The medical need to overcome resistance to BH3 mimetics supports the evaluation of innovative combination strategies. Novel agents including MCL-1 targeting BH3 mimetics are currently evaluated and may represent new therapeutic options in the field. The present review summarizes the current knowledge regarding venetoclax and other BH3 mimetics for the treatment of mature B-cell malignancies.


Assuntos
Linfócitos B/patologia , Linfoma de Células B/fisiopatologia , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos
5.
Proc Natl Acad Sci U S A ; 116(33): 16420-16429, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371506

RESUMO

Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial. Genetic disruption of IRE1α or XBP1s, or pharmacologic IRE1α kinase inhibition, attenuated subcutaneous or orthometastatic growth of MM tumors in mice and augmented efficacy of two established frontline antimyeloma agents, bortezomib and lenalidomide. Mechanistically, IRE1α perturbation inhibited expression of key components of the endoplasmic reticulum-associated degradation machinery, as well as secretion of Ig light chains and of cytokines and chemokines known to promote MM growth. Selective IRE1α kinase inhibition reduced viability of CD138+ plasma cells while sparing CD138- cells derived from bone marrows of newly diagnosed or posttreatment-relapsed MM patients, in both US- and European Union-based cohorts. Effective IRE1α inhibition preserved glucose-induced insulin secretion by pancreatic microislets and viability of primary hepatocytes in vitro, as well as normal tissue homeostasis in mice. These results establish a strong rationale for developing kinase-directed inhibitors of IRE1α for MM therapy.


Assuntos
Endorribonucleases/genética , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Idoso , Animais , Bortezomib/farmacologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lenalidomida/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Hematol Oncol ; 11(1): 137, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545397

RESUMO

BACKGROUND: Human myeloma cell lines (HMCLs) are widely used for their representation of primary myeloma cells because they cover patient diversity, although not fully. Their genetic background is mostly undiscovered, and no comprehensive study has ever been conducted in order to reveal those details. METHODS: We performed whole-exon sequencing of 33 HMCLs, which were established over the last 50 years in 12 laboratories. Gene expression profiling and drug testing for the 33 HMCLs are also provided and correlated to exon-sequencing findings. RESULTS: Missense mutations were the most frequent hits in genes (92%). HMCLs harbored between 307 and 916 mutations per sample, with TP53 being the most mutated gene (67%). Recurrent bi-allelic losses were found in genes involved in cell cycle regulation (RB1, CDKN2C), the NFκB pathway (TRAF3, BIRC2), and the p53 pathway (TP53, CDKN2A). Frequency of mutations/deletions in HMCLs were either similar to that of patients (e.g., DIS3, PRDM1, KRAS) or highly increased (e.g., TP53, CDKN2C, NRAS, PRKD2). MAPK was the most altered pathway (82% of HMCLs), mainly by RAS mutants. Surprisingly, HMCLs displayed alterations in epigenetic (73%) and Fanconi anemia (54%) and few alterations in apoptotic machinery. We further identified mutually exclusive and associated mutations/deletions in genes involved in the MAPK and p53 pathways as well as in chromatin regulator/modifier genes. Finally, by combining the gene expression profile, gene mutation, gene deletion, and drug response, we demonstrated that several targeted drugs overcome or bypass some mutations. CONCLUSIONS: With this work, we retrieved genomic alterations of HMCLs, highlighting that they display numerous and unprecedented abnormalities, especially in DNA regulation and repair pathways. Furthermore, we demonstrate that HMCLs are a reliable model for drug screening for refractory patients at diagnosis or at relapse.


Assuntos
Reparo do DNA/genética , DNA/genética , Mieloma Múltiplo/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Éxons , Humanos , Mieloma Múltiplo/metabolismo , Mutação
7.
Blood ; 132(25): 2656-2669, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30309889

RESUMO

BH3 mimetics are promising drugs for hematologic malignancies that trigger cell death by promoting the release of proapoptotic BCL2 family members from antiapoptotic proteins. Multiple myeloma is considered to be a disease dependent mainly on MCL1 for survival, based mostly on studies using cell lines. We used a BH3-mimetic toolkit to study the dependency on BCL2, BCLXL, or MCL1 in malignant plasma cells from 60 patients. Dependencies were analyzed using an unbiased BH3 mimetics cell-death clustering by k-means. In the whole cohort of patients, BCL2 dependency was mostly found in the CCND1 subgroup (83%). Of note, MCL1 dependence significantly increased from 33% at diagnosis to 69% at relapse, suggesting a plasticity of the cellular dependency favoring MCL1 dependencies at relapse. In addition, 35% of overall patient samples showed codependencies on either BCL2/MCL1 or BCLXL/MCL1. Finally, we identified a group of patients not targeted by any of the BH3 mimetics, predominantly at diagnosis in patients not presenting the common recurrent translocations. Mechanistically, we demonstrated that BAK is crucial for cell death induced by MCL1 mimetic A1210477, according to the protection from cell death observed by BAK knock-down, as well as the complete and early disruption of MCL1/BAK complexes on A1210477 treatment. Interestingly, this complex was also dissociated in A1210477-resistant cells, but free BAK was simultaneously recaptured by BCLXL, supporting the role of BCLXL in A1210477 resistance. In conclusion, our study opens the way to rationally use venetoclax and/or MCL1 BH3 mimetics for clinical evaluation in myeloma at both diagnosis and relapse.


Assuntos
Antineoplásicos , Materiais Biomiméticos , Mieloma Múltiplo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fragmentos de Peptídeos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
9.
Front Oncol ; 8: 645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666297

RESUMO

BCL2-family proteins have a central role in the mitochondrial apoptosis machinery and their expression is known to be deregulated in many cancer types. Effort in the development of small molecules that selectively target anti-apoptotic members of this family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising preclinical and clinical activity in B cell malignancies. However, several mechanisms of intrinsic or acquired resistance have been described ex vivo therefore predictive markers of response as well as mechanism-based combinations have to be designed. In the present study, we analyzed the expression of the BCL2-family genes across 10 mature B cell malignancies through computational normalization of 21 publicly available Affimetrix datasets gathering 1,219 patient samples. To better understand the deregulation of anti- and pro-apoptotic members of the BCL2-family in hematological disorders, we first compared gene expression profiles of malignant B cells to their relative normal control (naïve B cell to plasma cells, n = 37). We further assessed BCL2-family expression according to tissue localization i.e., peripheral blood, bone marrow, and lymph node, molecular subgroups or disease status i.e., indolent to aggressive. Across all cancer types, we showed that anti-apoptotic genes are upregulated while pro-apoptotic genes are downregulated when compared to normal counterpart cells. Of interest, our analysis highlighted that, independently of the nature of malignant B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in tumor niches, suggesting a central role of the microenvironment in their regulation. In addition, we showed selective modulations across molecular subgroups and showed that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by integrating recent data on venetoclax-monotherapy clinical activity with the expression of BCL2-family members involved in the venetoclax response, we determined that the ratio (BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response for mature B cell malignancies in vivo.

11.
Cancer Lett ; 383(2): 204-211, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27697610

RESUMO

As myeloma cells actively produce and secrete immunoglobulins, they are prone to ER stress, which if unresolved leads to apoptosis. We found that myeloma cell death induced by the ER stressor Thapsigargin was highly variable, ranging from 2 to 89%. Induction of ATF4 and CHOP was observed in myeloma cells under Thapsigargin independently of cell death. The decrease in Mcl-1 was associated with protein translation inhibition and identified as a crucial factor in Thapsigargin sensitivity, since it was the only Bcl-2 family protein differentially modified between sensitive and resistant myeloma cells. Bak but not Bax was found to contribute to Thapsigargin-induced apoptosis. Appropriately, a basal Mcl-1/Bak interaction was demonstrated in Thapsigargin-sensitive cells. Of note, the only pro-apoptotic protein freed from Mcl-1 under Thapsigargin was Bak, whereas Mcl-1/Noxa or Mcl-1/Bim complexes were simultaneously increased. Thus, the disruption of the basal Mcl-1/Bak complex in Thapsigargin-sensitive cells seemed to be an essential event in cell death induction, probably favored by the induced Noxa and Bim BH3-only proteins. These findings underscore the implication of the Mcl-1/Bak axis in myeloma cell death triggered by Thapsigargin.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Mitocôndrias/enzimologia , Mieloma Múltiplo/enzimologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Transdução de Sinais , Sulfonamidas/farmacologia , Tapsigargina/farmacologia , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/genética
12.
J Exp Med ; 213(9): 1705-22, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455953

RESUMO

Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.


Assuntos
Mieloma Múltiplo/etiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hipergamaglobulinemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/terapia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Sindecana-1/análise , Proteína bcl-X/fisiologia
13.
Oncotarget ; 6(29): 26922-34, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26323097

RESUMO

Due to its cytotoxic effect in lymphoid cells, dexamethasone is widely used in the treatment of multiple myeloma (MM). However, only a subset of myeloma patients responds to high-dose dexamethasone. Despite the undeniable anti-myeloma benefits of dexamethasone, significant adverse effects have been reported. We re-evaluate the anti-tumor effect of dexamethasone according to the molecular heterogeneity of MM. We demonstrated that the pro-death effect of dexamethasone is related to the genetic heterogeneity of MM because sensitive cell lines were restricted to MAF and MMSET signature subgroups, whereas all CCND1 cell lines (n = 10) were resistant to dexamethasone. We demonstrated that the glucocorticoid receptor expression was an important limiting factor for dexamethasone-induced cell death and we found a correlation between glucocorticoid receptor levels and the induction of glucocorticoid-induced leucine zipper (GILZ) under dexamethasone treatment. By silencing GILZ, we next demonstrated that GILZ is necessary for Dex induced apoptosis while triggering an imbalance between anti- and pro-apoptotic Bcl-2 proteins. Finally, the heterogeneity of the dexamethasone response was further confirmed in vivo using myeloma xenograft models. Our findings suggested that the effect of dexamethasone should be re-evaluated within molecular subgroups of myeloma patients to improve its efficacy and reduce its adverse effects.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Dexametasona/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Animais , Apoptose , Morte Celular , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Glucocorticoides/química , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Receptores de Glucocorticoides/metabolismo
15.
Cancer Biol Ther ; 16(1): 60-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25517601

RESUMO

Multiple myeloma (MM), a plasma cell malignancy, remains incurable despite the development of new therapies. Curcumin anti-tumor effects were previously characterized in multiple myeloma, however only few MM cell lines were included in these studies. Since myeloma is a heterogeneous disease it is important to address the impact of myeloma molecular heterogeneity in curcumin cell death induction. In the present study, a large panel of human myeloma cell lines (HMCLs) (n = 29), representing the main molecular MM subgroups, was screened for curcumin sensitivity. We observed that curcumin cell death induction was heterogeneous, of note 16 HMCLs were highly sensitive to curcumin (LD50 < 20.5 µM), 6 HMCLs exhibited intermediate LD50 values (20.5 µM ≤ LD50 < 32.2 µM) and only 7 HMCLs were weakly sensitive (35 < LD50 < 56 µM). Cell lines harboring the t(11;14) translocation were less sensitive (median LD50 32.9 µM) than non-t(11;14) (median LD50 17.9 µM), which included poor prognosis t(4;14) and t(14;16) cells. Interestingly, curcumin sensitivity was not dependent on TP53 status. For the first time we showed that primary myeloma cells were also sensitive, even those displaying del(17p), another poor prognosis factor. We also unravel the contribution of anti-apoptotic Bcl-2 family molecules in curcumin response. We found that down-regulation of Mcl-1, an essential MM survival factor, was associated with curcumin-induced cell death and its knockdown sensitized myeloma cells to curcumin, highlighting Mcl-1 as an important target for curcumin-induced apoptosis. Altogether, these results support clinical trials including curcumin in association with standard therapy.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Caspase 3/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Plasmócitos/patologia , Prognóstico
16.
BMC Cancer ; 14: 437, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24927749

RESUMO

BACKGROUND: The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. METHODS: A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. RESULTS: Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). CONCLUSION: These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Concentração Inibidora 50 , Mitocôndrias/metabolismo , Transporte Proteico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ativação Transcricional/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Front Immunol ; 4: 467, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24391642

RESUMO

Multiple myeloma (MM) is a plasma-cell (PC) malignancy that is heterogeneous in its clinical presentation and prognosis. Monoclonal gammopathy of undetermined significance (MGUS) consistently preceded development of MM. The presence of primary IgH translocations and the universal overexpression of cyclin D genes led to a molecular classification of MM patients into different disease subtypes. Since Bcl-2 family proteins determine cell fate, we analyzed a publicly available Affymetrix gene expression of 44 MGUS and 414 newly diagnosed MM patients to investigate (1) the global change of Bcl-2 family members in MM versus MGUS (2) whether the four major subtypes defined as hyperdiploid, CyclinD1, MAF, and MMSET, display specific apoptotic machineries. We showed that among the main anti-apoptotic members (Bcl-2, Bcl-xL, and Mcl-1), Mcl-1 up-regulation discriminated MM from MGUS, in agreement with the prominent role of Mcl-1 in PC differentiation. Surprisingly, the expression of multi-domain pro-apoptotic Bak and Bax were increased during the progression of MGUS to MM. The combined profile of Bcl-2, Bcl-xL, and Mcl-1 was sufficient to distinguish MM molecular groups. While specific pro-apoptotic members expression was observed for each MM subtypes, CyclinD1 subgroup, was identified as a particular entity characterized by a low expression of BH3-only (Puma, Bik, and Bad) and multi-domain pro-apoptotic members (Bax and Bak). Our analysis supports the notion that MM heterogeneity is extended to the differential expression of the Bcl-2 family content in each MM subgroup. The influence of Bcl-2 family profile in the survival of the different patient groups will be further discussed to establish the potential consequences for therapeutic interventions. Finally, the use of distinct pro-survival members in the different steps of immune responses to antigen raises also the question of whether the different Bcl-2 anti-apoptotic profile could reflect a different origin of MM cells.

18.
Cancer Res ; 72(17): 4562-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22738917

RESUMO

Myeloma cells are sensitive to TRAIL through the two death receptors DR4 and DR5. Because p53 directly modulates expression of death receptors, we investigated here whether p53 can modulate myeloma sensitivity to TRAIL. We found that p53 affects the sensitivity of myeloma cells to the DR5 agonistic human antibody lexatumumab but not the DR4 antibody mapatumumab. TP53 wild-type myeloma cells overexpressed DR5 in correlation with sensitivity to lexatumumab. Both nongenotoxic (nutlin-3a) and genotoxic (melphalan) p53-inducing stresses increased DR5 expression only in TP53 wild-type cells and synergistically increased lexatumumab efficiency yet did not increase DR4 expression, nor sensitivity to mapatumumab. Silencing of p53 strongly decreased DR5 expression and induced resistance to nutlin-3a and lexatumumab but did not modulate DR4 expression or sensitivity to mapatumumab. Increase of lexatumumab efficiency induced by nutlin-3a was related to a p53-dependent increase of DR5 expression. In primary myeloma cells, nutlin-3a increased DR5 expression and lexatumumab efficiency but did not increase mapatumumab efficiency. Taken together, our findings indicate that p53 controls the sensitivity of myeloma through DR5 but not DR4 and suggest that a subset of patients with multiple myeloma may benefit from DR5 therapy.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteína Supressora de Tumor p53/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/toxicidade , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 17 , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Imidazóis/farmacologia , Piperazinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/genética
19.
Biochem Biophys Res Commun ; 413(3): 460-4, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21907705

RESUMO

The level of the Mcl-1 pro-survival protein is highly regulated, and the down-regulation of Mcl-1 expression favors the apoptotic process. Mcl-1 physically interacts with different BH3-only proteins; particularly, Noxa is involved in the modulation of Mcl-1 expression. In this study, we demonstrated that Noxa triggers the degradation of Mcl-1 at the mitochondria according to the exclusive location of Noxa at this compartment. The Noxa-induced degradation of Mcl-1 required the E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Because the USP9X deubiquitinase was recently demonstrated to be involved in Mcl-1 protein turnover by preventing its degradation through the removal of conjugated ubiquitin, we investigated whether Noxa affected the deubiquitination process. Interestingly, Noxa over-expression caused a decrease in the USP9X/Mcl-1 interaction associated with an increase in the Mcl-1 polyubiquitinated forms. Additionally, Noxa over-expression triggered an increase in the Mule/Mcl-1 interaction in parallel with the decrease in Mule/USP9X complex formation. Taken together, these modifications result in the degradation of Mcl-1 by the proteasome machinery. The implication of Noxa in the regulation of Mcl-1 proteasomal degradation adds complexity to this process, which is governed by multiple interactions.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Supressoras de Tumor
20.
Blood ; 118(14): 3901-10, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21835956

RESUMO

Multiple myeloma is a plasma cell malignancy that is heterogeneous with respect to its causative molecular abnormalities and the treatment response of patients. The Bcl-2 protein family is critical for myeloma cell survival. ABT-737 is a cell-permeant compound that binds to Bcl-2 and Bcl-x(L) but not to Mcl-1. Using a myeloma cell line collection (n = 25) representative of different molecular translocations, we showed that ABT-737 effectively kills a subset of cell lines (n = 6), with a median lethal dose ranging from 7 ± 0.4 nM to 150 ± 7.5 nM. Of interest, all sensitive cell lines harbored a t(11;14). We demonstrated that ABT-737-sensitive and ABT-737-resistant cell lines could be differentiated by the BCL2/MCL1 expression ratio. A screen of a public expression database of myeloma patients indicates that the BCL2/MCL1 ratio of t(11;14) and hyperdiploid patients was significantly higher than in all other groups (P < .001). ABT-737 first induced the disruption of Bcl-2/Bax, Bcl-2/Bik, or Bcl-2/Puma complexes, followed by the disruption of Bcl-2 heterodimers with Bak and Bim. Altogether, the identification of a subset of cell lines and primary cells effectively killed by ABT-737 alone supported the evaluation of ABT-263, an orally active counterpart to ABT-737, for the treatment of t(11;14) and hyperdiploid groups of myeloma harboring a Bcl-2(high)/Mcl-1(low) profile.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/tratamento farmacológico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA