RESUMO
The antitumor activity of Ti(IV)-based compounds put them in the spotlight for cancer treatment in the past, but their lack of stability in vivo due to a high rate of hydrolysis has hindered their development as antitumor drugs. As a possible solution for this problem, we have reported a synthesis strategy through which we combined a titanocene fragment, a tridentate ligand, and a long aliphatic chain. This strategy allowed us to generate a titanium compound (Myr-Ti) capable of interacting with albumin, highly stable in water and with cytotoxic activity in tumor cells[1]. Following a similar strategy, now we report the synthesis of a new compound (Myr-TiY) derived from titanocene Y that shows antitumoral activity in a cisplatin resistant model with a 50% inhibitory concentration (IC50) of 41-76 µM. This new compound shows high stability and a strong interaction with human serum albumin. Myr-TiY has a significant antiproliferative and proapoptotic effect on the tested cancer cells and shows potential tumor selectivity when assayed in non-tumor human epithelial cells being more selective (1.3-3.8 times) for tumor cells than cisplatin. These results lead us to think that the described synthesis strategy could be useful to generate compounds for the treatment of both cisplatin-sensitive and cisplatin-resistant cancers.
Assuntos
Antineoplásicos , Neoplasias , Compostos Organometálicos , Humanos , Cisplatino/farmacologia , Platina , Neoplasias/tratamento farmacológico , AlbuminasRESUMO
BACKGROUND: Abdominal aortic aneurysm (AAA), a degenerative vascular pathology characterized by permanent dilation of the aorta, is considered a chronic inflammatory disease involving innate/adaptive immunity. However, the functional role of antibody-dependent immune response against antigens present in the damaged vessel remains unresolved. We hypothesized that engagement of immunoglobulin G (IgG) Fc receptors (FcγR) by immune complexes (IC) in the aortic wall contributes to AAA development. We therefore evaluated FcγR expression in AAA lesions and analysed whether inhibition of FcγR signaling molecules (γ-chain and Syk kinase) influences AAA formation in mice. METHODS: FcγR gene/protein expression was assessed in human and mouse AAA tissues. Experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and γ-chain knockout (γKO) mice (devoid of activating FcγR) in combination with macrophage adoptive transfer or Syk inhibitor treatment. To verify the mechanisms of FcγR in vitro, vascular smooth muscle cells (VSMC) and macrophages were stimulated with IgG IC. RESULTS: FcγR overexpression was detected in adventitia and media layers of human and mouse AAA. Elastase-perfused γKO mice exhibited a decrease in AAA incidence, aortic dilation, elastin degradation, and VSMC loss. This was associated with (1) reduced infiltrating leukocytes and immune deposits in AAA lesions, (2) inflammatory genes and metalloproteinases downregulation, (3) redox balance restoration, and (4) converse phenotype of anti-inflammatory macrophage M2 and contractile VSMC. Adoptive transfer of FcγR-expressing macrophages aggravated aneurysm in γKO mice. In vitro, FcγR deficiency attenuated inflammatory gene expression, oxidative stress, and phenotypic switch triggered by IC. Additionally, Syk inhibition prevented IC-mediated cell responses, reduced inflammation, and mitigated AAA formation. CONCLUSION: Our findings provide insight into the role and mechanisms mediating IgG-FcγR-associated inflammation and aortic wall injury in AAA, which might represent therapeutic targets against AAA disease.
Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Receptores de IgG/metabolismo , Animais , Complexo Antígeno-Anticorpo/efeitos adversos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Humanos , Cadeias gama de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Estresse Oxidativo , Elastase Pancreática/efeitos adversos , Pirimidinas/uso terapêutico , Receptores de IgG/genética , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismoRESUMO
The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Morfogênese , Fosfoproteínas/metabolismo , Animais , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Feminino , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Peixe-ZebraRESUMO
BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi olaparib depending on the BRCA1 mutation type. Lymphoblastoid cell lines derived from carriers of missense pathogenic variants in the BRCA1 BRCT domain (c.5117G > A, p.Gly1706Glu and c.5123C > A, p.Ala1708Glu) showed higher sensitivity to olaparib than cells with truncating variants or wild types (WT). Response to olaparib depended on a basal PARP enzymatic activity, but did not correlate with PARP1 expression. Interestingly, cellular sensitivity to the agent was associated with the level of BRCA1 recruitment into γH2AX foci, being the lowest in cells with missense variants. Since these variants lead to partially stable protein mutants, we propose a model in which the mutant protein acts in a dominant negative manner on the WT BRCA1, impairing the recruitment of BRCA1 into DNA damage sites and, consequently, increasing cellular sensitivity to PARPi. Taken together, our results indicate that carriers of different BRCA1 mutations could benefit from olaparib in a distinct way and show different toxicities to the agent, which could be especially relevant for a potential future use of PARPi as prophylactic agents in BRCA1 mutation carriers.